Homework 9 - Solutions
Calculus IIT

Exercise 1. One can show that the following is a power series representation of the function

V1+x:
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Find the radius of convergence for this power series.

We will use the Ratio Test to find the radius of convergence.
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The power series converges when |z| < 1, so the radius of convergence is R = 1.



Exercise 2. Start with the series from problem 1.

(a) Find a power series for (1 + :E)_l/z-

First we note that (v/I+ ) = (1 + 2)~'/2. From Exercise 1 we know that
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Taking the derivative of both sides, we have that

L 2N (2n)! .
(1 1/2 _ _1)" n—1
2( + ) Z( ) 1- 2n)4n(n!)2nx
n=1
Hence
S 2n)!
(1 ~1/2 _ ( .
+x) ; 1 —on)an(nl)? nx
i 2n(2n)! il
o’ 1 — 2n)47(n!)?
(b) Find a power series for (1 — 332)—1/2'
We substitute —z? for z in part (a):
(1— 2272 = Z 2n(2n)! ()t

1 —2n)4m(n!)?

N
Il
—_

2n(2n)!

e L A

tnqg

3
Il
—

2n(2n)!
SR 275)471)(71!)2“72(”1)

tnqg

3
Il
—

2n(2n)! -1
(1 =2n)47(n!)2

o1

i
I



We may further simplify this as
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(¢) Find a power series for arcsin(x).

Since the derivative of arcsin(z) is (1 —22) /2 then we integrate both sides of our answer
from (b):
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To find the value of Cy — C; we may use the condition arcsin(0) = 0:
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Exercise 3. Consider the function f(z) = ﬁ

(a) Find a formula for f™(0) for n > 0.

First we’ll find a few derivatives of f(z):
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We can rewrite these as
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In general, f("(z) = (=1)"- (n + 1)! - (1 +2)~"2 for n > 0. Now plugging in z = 0, we
get
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for all n > 0.

(b) Find a formula for the Taylor series for f(x) centered at x = 0.

We found £ (0) in part (a), so the Taylor series for f(z) centered at z = 0 is
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(¢) Find a power series expansion for f(x) centered at x = 0 in a different way - by modifying

the (geometric) power series for .

We have that
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so replacing z with —z we have
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To get the Taylor series expansion of ﬁ from here, we take the derivative of both
sides and get
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noting the change in starting index. Finally we have that
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(d) Check that your answers to (b) and (c) are the same.

The answer from (b) is
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These are equal since we can obtain (b) from (c) as follows:
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Exercise 4. Use Taylor/power series formulas to evaluate the following limits.

(a) Use the Taylor/power series for e* centered at x = 0 to find the limit
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The Taylor series of e” centered at x = 0 is
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and with terms written out this is
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(b) Use the Taylor/power series for Inx centered at x =1 to find the limit
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The Taylor series of Inx centered at z =1 is
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We may derive this as follows:
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Writing out a few terms we get
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