
Homework 9 - Solutions
Calculus III

Exercise 1. One can show that the following is a power series representation of the function√
1 + x:
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Find the radius of convergence for this power series.

We will use the Ratio Test to find the radius of convergence.
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The power series converges when |x| < 1, so the radius of convergence is R = 1.



Exercise 2. Start with the series from problem 1.

(a) Find a power series for (1 + x)−1/2.

First we note that (
√

1 + x)′ = 1
2(1 + x)−1/2. From Exercise 1 we know that

√
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∞∑
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Taking the derivative of both sides, we have that
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(b) Find a power series for (1− x2)−1/2.

We substitute −x2 for x in part (a):

(1− x2)−1/2 =
∞∑
n=1

(−1)n
2n(2n)!

(1− 2n)4n(n!)2
(−x2)n−1

=
∞∑
n=1

(−1)n
2n(2n)!

(1− 2n)4n(n!)2
(−1)n−1x2(n−1)

=

∞∑
n=1

(−1)2n−1
2n(2n)!

(1− 2n)4n(n!)2
x2(n−1)

=
∞∑
n=1

− 2n(2n)!

(1− 2n)4n(n!)2
x2(n−1)



We may further simplify this as

(1− x2)−1/2 =
∞∑
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(c) Find a power series for arcsin(x).

Since the derivative of arcsin(x) is (1−x2)−1/2 then we integrate both sides of our answer
from (b): ∫

1√
1− x2

dx =

∫ ∞∑
n=0
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=⇒ arcsin(x) + C1 =
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To find the value of C2 − C1 we may use the condition arcsin(0) = 0:

arcsin(0) =
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Therefore
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.



Exercise 3. Consider the function f(x) = 1
(1+x)2

.

(a) Find a formula for f (n)(0) for n ≥ 0.

First we’ll find a few derivatives of f(x):

f (0)(x) = (1 + x)−2

f (1)(x) = −2 · (1 + x)−3

f (2)(x) = −3 · −2 · (1 + x)−4

f (3)(x) = −4 · −3 · −2 · (1 + x)−5

f (4)(x) = −5 · −4 · −3 · −2 · (1 + x)−6

We can rewrite these as

f (0)(x) = (−1)0 · 1! · (1 + x)−2

f (1)(x) = (−1)1 · 2! · (1 + x)−3

f (2)(x) = (−1)2 · 3! · (1 + x)−4

f (3)(x) = (−1)3 · 4! · (1 + x)−5

f (4)(x) = (−1)4 · 5! · (1 + x)−6

In general, f (n)(x) = (−1)n · (n + 1)! · (1 + x)−n−2 for n ≥ 0. Now plugging in x = 0, we
get

f (n)(0) = (−1)n(n + 1)!

for all n ≥ 0.

(b) Find a formula for the Taylor series for f(x) centered at x = 0.

We found f (n)(0) in part (a), so the Taylor series for f(x) centered at x = 0 is
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∞∑
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∞∑
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∞∑
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(c) Find a power series expansion for f(x) centered at x = 0 in a different way - by modifying
the (geometric) power series for 1

1−x .

We have that
1

1− x
=
∞∑
n=0

xn

so replacing x with −x we have

1

1 + x
=
∞∑
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To get the Taylor series expansion of 1
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from here, we take the derivative of both

sides and get
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(1 + x)2
=
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noting the change in starting index. Finally we have that

1
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=
∞∑
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(d) Check that your answers to (b) and (c) are the same.

The answer from (b) is

1
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=

∞∑
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and the answer from (c) is

1

(1 + x)2
=
∞∑
n=1
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These are equal since we can obtain (b) from (c) as follows:

∞∑
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Exercise 4. Use Taylor/power series formulas to evaluate the following limits.

(a) Use the Taylor/power series for ex centered at x = 0 to find the limit

lim
x→0

ex − 1− x

x2

The Taylor series of ex centered at x = 0 is

ex =
∞∑
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and with terms written out this is
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(b) Use the Taylor/power series for lnx centered at x = 1 to find the limit

lim
x→1

(lnx) + 1− x

(1− x)2

The Taylor series of lnx centered at x = 1 is

lnx =
∞∑
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n
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We may derive this as follows:

lnx + C =

∫
1

x
dx

=

∫
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Then
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( ∞∑
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)
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Using the condition ln(1) = 0 we get
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( ∞∑
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n
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)
+ C1 − C

=⇒ 0 = 0 + C1 − C

=⇒ C1 − C = 0

Therefore
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n
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Writing out a few terms we get

lnx = (x− 1)− 1
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