Summary of convergence/divergence tests for infinite series:

- Geometric series: The series $\sum_{n=0}^{\infty} r^n$ converges to $\frac{1}{1-r}$ if -1 < r < 1 and diverges otherwise.
- *p*-series: The series $\sum_{n=1}^{\infty} \frac{1}{n^p}$ converges if p > 1 and diverges otherwise.
- Divergence Test: If the terms x_n do not approach 0 as $n \to \infty$, then the series $\sum_{n=1}^{\infty} x_n$ diverges.

• Integral Test: If the terms x_n are positive and decreasing, and x_n can be "turned into a function" f(x), then the series $\sum_{n=1}^{\infty} x_n$ and the improper integral $\int_{n=1}^{\infty} f(x) dx$ have the same convergence status.

• Comparison Test: If $0 \le x_n \le y_n$ for all n, and the new series $\sum_{n=1}^{\infty} y_n$ converges, then the original series $\sum_{n=1}^{\infty} x_n$ converges. If $0 \le y_n \le x_n$ for all n, and the new series $\sum_{n=1}^{\infty} y_n$ diverges, then the original series $\sum_{n=1}^{\infty} x_n$ diverges. If you get a situation/inequality not listed above, the test was inconclusive and you have to use another one.

• Limit Comparison Test: If $\frac{x_n}{y_n} \to L \neq 0$ (and L is a finite number), then the series $\sum_{n=1}^{\infty} x_n$ and $\sum_{n=1}^{\infty} y_n$ have the same convergence status. If L = 0 or $L = \pm \infty$, the test was inconclusive and you have to use another one.

• Alternating Series Test: If you have a series $\sum_{n=1}^{\infty} (-1)^n x_n$ or $\sum_{n=1}^{\infty} (-1)^{n+1} x_n$, and the terms x_n are positive, approach 0, and are decreasing, then the original series **converges**.

• Absolute Convergence Test: If you have a series $\sum_{n=1}^{\infty} x_n$, and the series $\sum_{n=1}^{\infty} |x_n|$ converges, then the original series $\sum_{n=1}^{\infty} x_n$ absolutely converges, which means that it converges.

• Root Test: If $\sqrt[n]{|x_n|} = |x_n|^{1/n}$ approaches a limit R, then the series $\sum_{n=1}^{\infty} x_n$ converges if R < 1 and the series $\sum_{n=1}^{\infty} x_n$ diverges if R > 1. If R = 1, this test was inconclusive and you have to use another one.

• Ratio Test: If $\frac{|x_{n+1}|}{|x_n|} = \left|\frac{x_{n+1}}{x_n}\right|$ approaches a limit R, then the series $\sum_{n=1}^{\infty} x_n$ converges if R < 1 and the series $\sum_{n=1}^{\infty} x_n$ diverges if R > 1. If R = 1, this test was inconclusive and you have to use another one.

Approximation formulas:

• Positive series: For an infinite series $\sum_{n=1}^{\infty} f(n)$ with positive and decreasing terms, the error from approximating with the Nth partial sum is less than $\int_{N}^{\infty} f(x) dx$.

• Alternating series: For an infinite series $\sum_{n=1}^{\infty} (-1)^n x_n$ or $\sum_{n=1}^{\infty} (-1)^{n+1} x_n$ with x_n positive and decreasing, the error from approximating with the Nth partial sum is less than x_{N+1} .

Formulas for parametric/polar functions:

• Parametric slope: $\frac{dy}{dx} = \frac{\left(\frac{dy}{dt}\right)}{\left(\frac{dx}{dt}\right)}$ or $\frac{y'}{x'}$

• Parametric area: Area = $\int_{t_1}^{t_2} y \frac{dx}{dt} dt$ or $\int_{t_1}^{t_2} yx' dt$

• Parametric arc length: Length = $\int_{t_1}^{t_2} \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt$ or $\int_{t_1}^{t_2} \sqrt{(x')^2 + (y')^2} dt$

• Polar conversion: $y = r \sin \theta$, $x = r \cos \theta$, $r = \sqrt{x^2 + y^2}$, $\tan \theta = \frac{y}{x}$

• Polar slope: $\frac{dy}{dx} = \frac{\left(\frac{dy}{d\theta}\right)}{\left(\frac{dx}{d\theta}\right)}$ or $\frac{(r\sin\theta)'}{(r\cos\theta)'}$

• Polar area: Area = $\int_{\theta_1}^{\theta_2} \frac{1}{2} r^2 d\theta$

• Polar arc length: Length = $\int_{\theta_1}^{\theta_2} \sqrt{r^2 + \left(\frac{dr}{d\theta}\right)^2} d\theta$

• Useful trig formulas: $\sin^2 \theta + \cos^2 \theta = 1$, $\sin^2 \theta = \frac{1 - \cos(2\theta)}{2}$, $\cos^2 \theta = \frac{1 + \cos(2\theta)}{2}$

Taylor series:

• Taylor series formula: The Taylor series for f(x) centered at x = a is $\sum_{n=0}^{\infty} c_n (x-a)^n$, where $c_n = \frac{f^{(n)}(a)}{n!}$.

•
$$\sin x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!}$$
, interval of convergence $(-\infty, \infty)$

•
$$\cos x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!}$$
, interval of convergence $(-\infty, \infty)$

•
$$\arctan x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{2n+1}$$
, interval of convergence $[-1,1]$

•
$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$
, interval of convergence $(-\infty, \infty)$

•
$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n$$
, interval of convergence $(-1,1)$