Summary of convergence/divergence tests for infinite series:
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o Geometric series: The series E r’ converges to ﬁ if =1 <r < 1 and diverges otherwise.
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e p-series: The series E — converges if p > 1 and diverges otherwise.
n
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e Divergence Test: If the terms z,, do not approach 0 as n — oo, then the series Z x, diverges.
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e Integral Test: If the terms z,, are positive and decreasing, and z,, can be “turned into a function” f(z), then the series
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Z x, and the improper integral / f(z) dz have the same convergence status.
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e Comparison Test: If 0 < z,, <y, for all n, and the new series Z yn converges, then the original series Z T, converges.
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If 0 <y, < x, for all n, and the new series Zyn diverges, then the original series an diverges. If you get a situa-
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tion/inequality not listed above, the test was inconclusive and you have to use another one.
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e Limit Comparison Test: If {= — L # 0 (and L is a finite number), then the series Zmn and Zyn have the same
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convergence status. If L =0 or L = £o00, the test was inconclusive and you have to use another one.
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e Alternating Series Test: If you have a series Z(—l)”xn or Z(—l)"“xn, and the terms x,, are positive, approach 0, and
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are decreasing, then the original series converges.
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e Absolute Convergence Test: If you have a series Z Zn, and the series Z |x,| converges, then the original series Z Tn
n=1 n=1 n=1
absolutely converges, which means that it converges.
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e Root Test: If {/|z,| = \J;n|1/” approaches a limit R, then the series an converges if R < 1 and the series an
n=1 n=1
diverges if R > 1. If R = 1, this test was inconclusive and you have to use another one.
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% approaches a limit R, then the series Z z, converges if R < 1 and the series Z T, diverges
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if R > 1. If R =1, this test was inconclusive and you have to use another one.

e Ratio Test: If % =




Approximation formulas:

oo

e Positive series: For an infinite series Z f(n) with positive and decreasing terms, the error from approximating with the
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Nth partial sum is less than / f(zx) dx.
N
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e Alternating series: For an infinite series Z(—l)"aﬁn or Z(—l)"“azn with z,, positive and decreasing, the error from
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approximating with the Nth partial sum is less than x 1.

Formulas for parametric/polar functions:

. d
e Parametric slope: —— = or &
T

to d ta
e Parametric area: Area = / yd—f dt or / yx' dt
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t2 dz\* dy\? t2
e Parametric arc length: Length = / (dt) + (dt) dt or / V(@24 (y')? dt
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e Polar conversion: y = rsinf, x = rcosf, r = \/2? + y?, tanf = £

dy _ ( ) (rsin 9)’
e Polar slope: ar O (rcosd)
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e Polar area: Area = /
01

02 dr\?
e Polar arc length: Length = / r2 + ()
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e Useful trig formulas: sin? 6 + cos? 0 = 1, sin®§ =

Taylor series:
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e Taylor series formula: The Taylor series for f(z) centered at x = a is Z cn(x —a)™, where ¢, = fT,(a)
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e sinxy = % interval of convergence (—oo, 0o
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o (2n+1)! % n
o’ = Z —» interval of convergence (—00, 00)
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e cosx = ~————— interval of convergence (—o0, 0o
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° 3 = Z x", interval of convergence (—1,1)
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e arctanx = Z Tongl interval of convergence [—1, 1]
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