Math 3162 Homework Assignment 2 Extra Problem Solutions

January 24, 2019

1 4.4.13(b) Problem Statement

Let g be a continuous function on the open interval (a, b). Prove that g is uniformly continuous on (a, b) if and only if it is possible to define values g(a) and g(b) at the endpoints so that the extended function g is continuous on [a, b].

1.1 Notes

In the proof I claim that if (x_n) is not Cauchy, then there exists an $\epsilon > 0$ and a subsequence (x_{n_k}) such that for all k, $|(x_{n_k}) - (x_{n_{k+1}})| > \epsilon$. If you aren't sure you can prove this, you should read the proof directly below:

Proof: If (x_n) is Cauchy then for all $\epsilon > 0$ there exists an $N \in \mathbb{N}$ such that for all $n, m > \mathbb{N}$, $|(x_{n_k}) - (x_{n_{k+1}})| < \epsilon$.

If (x_n) is NOT Cauchy then there exists an $\epsilon > 0$ such that for all $N \in \mathbb{N}$, there exists an n, k > N such that $|(x_n) - (x_k)| \ge \epsilon$. By the triangle inequality, either $|(x_N) - (x_k)| \ge \frac{\epsilon}{2}$ or $|(x_N) - (x_n)| \ge \frac{\epsilon}{2}$. Now we can say that if (x_n) is NOT Cauchy then there exists an $\epsilon > 0$ such that for all $N \in \mathbb{N}$, there exists a k > N such that $|(x_N) - (x_k)| \ge \epsilon$. Now we can define a subsequence (a_{n_k}) by choosing $n_1 = 1$ and defining n_{k+1} to be the smallest n value greater than n_k , such that $|a_{n_{k+1}} - a_{n_k}| > \epsilon$.

1.2 Solution

⇐ Direct Proof

Suppose there exist g(a) and g(b) such that g is continuous on [a, b]. Since g is continuous, and [a, b] is compact, we know that g is uniformly continuous on [a, b]. Since $(a, b) \subset [a, b]$, by the definition of uniform continuity, we know that g is also uniformly continuous on (a, b). \Rightarrow Proof By Contraposition

Suppose there does not exist g(a) and g(b) so that g is continuous on [a, b]. Without loss of generality, suppose that an appropriate g(a) does not exist. Then it must be because $\lim_{x\to a^+} g(x)$ does not exist. That means there exists an $a_n \to a$ such that $g(a_n)$ does not converge. Therefore, $g(a_n)$ is not Cauchy. Then there exists a $\epsilon > 0$ and a subsequence $(a_{n_k}) \to a$ such that for all $k \in \mathbb{N}, |g(a_{n_k}) - g(a_{n_{k+1}})| > \epsilon$. Define $a'_{n_k} = a_{n_{k+1}}$. Since (a_n) converges, (a_{n_k}) is Cauchy. So $|a_{n_k} - a'_{n_k}| \to 0$, but $|g(a_{n_k}) - g(a'_{n_k})| > \epsilon$. By the sequential criterion for absence of uniform continuity, g is not uniformly continuous on (a, b).

2 4.5.8 Problem Statement

If a function $f: A \to \mathbb{R}$ is one-to-one, then we can define the inverse function f^{-1} on the range of f in the natural way: $f^{-1}(y) = x$ where y = f(x). Show that if f is continuous on an interval [a, b] and one-to-one, then f^{-1} is continuous.

2.1 Notes

We can actually show something even stronger: If f is continuous on an compact set, A, and one-to-one, then f^{-1} is continuous.

2.2 **Solution**

By way of contradiction, suppose that $f^{-1}: f(A) \to A$ is not continuous. Then there exists an $x \in A$ and sequence $(y_n) \subseteq f(A)$ such that $(y_n) \to f(x)$ but $f^{-1}(y_n) \not\to f^{-1}(f(x))$. Then $f^{-1}(y_n) \not\rightarrow x$. Define $(x_n) = f^{-1}(y_n)$. Since $(x_n) \not\rightarrow x$ There exists a $\delta > 0$ such that

$$|\{n: (x_n) \notin (x - \delta, x + \delta)\}| = \infty$$

. Since $A/(x-\delta, x+\delta)$ is compact there exists a subsequence $(x_{n_k}) \subset A/(x-\delta, x+\delta)$ such that $(x_{n_k}) \to x_0$ where $x_0 \neq x$. Because f is continuous

$$f(x_0) = \lim_{k \to \infty} f(x_{n_k}) = \lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} f(f^{-1}(y_n)) = \lim_{n \to \infty} y_n = f(x)$$

. This contradicts the assumption that f is one-to-one. Therefore f^{-1} is continuous.

5.2.6 (b)Problem Statement 3

Assume A is open. If q is differentiable at $c \in A$ show

$$g'(c) = \lim_{h \to 0} \frac{g(c+h) - g(c-h)}{2h}$$

3.1 Solution

By 5.2.6 (a) $g'(c) = \lim_{h \to 0} \frac{g(c+h) - g(c)}{h}$. Let $(x_n) \to 0$, where $x_n \neq 0$ for all values of n. Let (y_n) be defined by $y_n = -x_n$, then $(y_n) \to 0$ and $y_n \neq 0$. By the definition of a limit, $\lim_{n\to\infty} \frac{f(c+y_n)-f(c)}{y_n} = g'(c)$. We also know that $\lim_{n\to\infty} \frac{f(c+y_n)-f(c)}{y_n} = \lim_{n\to\infty} \frac{f(c-x_n)-f(c)}{-x_n}$. Therefore *a* (

$$\lim_{n \to \infty} \frac{f(c - x_n) - f(c)}{-x_n} = \lim_{n \to \infty} \frac{f(c) - f(c - x_n)}{x_n} = g'(c)$$

. Since our choice of (x_n) was arbitrary, we have that

$$\lim_{h \to 0} \frac{g(c) - g(c-h)}{h} = g'(c)$$

. Putting this together we have

$$g'(c) = \frac{1}{2}(g'(c) + g'(c)) = \frac{1}{2}\left(\lim_{h \to 0} \frac{g(c+h) - g(c)}{h} + \lim_{h \to 0} \frac{g(c) - g(c-h)}{h}\right) = \lim_{h \to 0} \frac{g(c+h) - g(c-h)}{2h}$$