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1 4.4.13(b) Problem Statement
Let g be a continuous function on the open interval (a, b). Prove that g is uniformly continuous on
(a, b) if and only if it is possible to define values g(a) and g(b) at the endpoints so that the extended
function g is continuous on [a, b].

1.1 Notes
In the proof I claim that if (xn) is not Cauchy, then there exists an ε > 0 and a subsequence (xnk

)
such that for all k, |(xnk

)− (xnk+1
)| > ε. If you aren’t sure you can prove this, you should read the

proof directly below:
Proof: If (xn) is Cauchy then for all ε > 0 there exists an N ∈ N such that for all n,m > N,
|(xnk

)− (xnk+1
)| < ε.

If (xn) is NOT Cauchy then there exists an ε > 0 such that for all N ∈ N, there exists an
n, k > N such that |(xn) − (xk)| ≥ ε. By the triangle inequality, either |(xN) − (xk)| ≥ ε

2
or

|(xN)− (xn)| ≥ ε
2
. Now we can say that if (xn) is NOT Cauchy then there exists an ε > 0 such that

for all N ∈ N, there exists a k > N such that |(xN)− (xk)| ≥ ε. Now we can define a subsequence
(ank

) by choosing n1 = 1 and defining nk+1 to be the smallest n value greater than nk, such that
|ank+1

− ank
| > ε.

1.2 Solution
⇐ Direct Proof

Suppose there exist g(a) and g(b) such that g is continuous on [a, b]. Since g is continuous, and
[a, b] is compact, we know that g is uniformly continuous on [a, b]. Since (a, b) ⊂ [a, b], by the
definition of uniform continuity, we know that g is also uniformly continuous on (a, b).
⇒ Proof By Contraposition
Suppose there does not exist g(a) and g(b) so that g is continuous on [a, b]. Without loss of gen-
erality, suppose that an appropriate g(a) does not exist. Then it must be because limx→a+g(x)
does not exist. That means there exists an an → a such that g(an) does not converge. Therefore,
g(an) is not Cauchy. Then there exists a ε > 0 and a subsequence (ank

) → a such that for all
k ∈ N, |g(ank

) − g(ank+1
)| > ε. Define a′nk

= ank+1
. Since (an) converges, (ank

) is Cauchy. So
|ank
− a′nk

| → 0, but |g(ank
) − g(a′nk

)| > ε. By the sequential criterion for absence of uniform
continuity, g is not uniformly continuous on (a, b).
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2 4.5.8 Problem Statement
If a function f : A → R is one-to-one, then we can define the inverse function f−1 on the range
of f in the natural way: f−1(y) = x where y = f(x). Show that if f is continuous on an interval
[a, b] and one-to-one, then f−1 is continuous.

2.1 Notes
We can actually show something even stronger: If f is continuous on an compact set, A, and
one-to-one, then f−1 is continuous.

2.2 Solution
By way of contradiction, suppose that f−1 : f(A) → A is not continuous. Then there exists an
x ∈ A and sequence (yn) ⊆ f(A) such that (yn) → f(x) but f−1(yn) 6→ f−1(f(x)). Then
f−1(yn) 6→ x. Define (xn) = f−1(yn). Since (xn) 6→ x There exists a δ > 0 such that

|
{
n : (xn) 6∈ (x− δ, x+ δ)

}
| =∞

. Since A/(x− δ, x+ δ) is compact there exists a subsequence (xnk
) ⊂ A/(x− δ, x+ δ) such that

(xnk
)→ x0 where x0 6= x. Because f is continuous

f(x0) = lim
k→∞

f(xnk
) = lim

n→∞
f(xn) = lim

n→∞
f(f−1(yn)) = lim

n→∞
yn = f(x)

. This contradicts the assumption that f is one-to-one. Therefore f−1 is continuous.

3 5.2.6 (b)Problem Statement
Assume A is open. If g is differentiable at c ∈ A show

g‘(c) = lim
h→0

g(c+ h)− g(c− h)
2h

3.1 Solution
By 5.2.6 (a) g‘(c) = limh→0

g(c+h)−g(c)
h

.
Let (xn) → 0, where xn 6= 0 for all values of n. Let (yn) be defined by yn = −xn, then (yn) → 0

and yn 6= 0. By the definition of a limit, limn→∞
f(c+yn)−f(c)

yn
= g‘(c).

We also know that limn→∞
f(c+yn)−f(c)

yn
= limn→∞

f(c−xn)−f(c)
−xn .

Therefore

lim
n→∞

f(c− xn)− f(c)
−xn

= lim
n→∞

f(c)− f(c− xn)
xn

= g‘(c)

. Since our choice of (xn) was arbitrary, we have that

lim
h→0

g(c)− g(c− h)
h

= g‘(c)

. Putting this together we have

g‘(c) =
1

2
(g‘(c)+g‘(c)) =

1

2

(
lim
h→0

g(c+ h)− g(c)
h

+lim
h→0

g(c)− g(c− h)
h

)
= lim

h→0

g(c+ h)− g(c− h)
2h

.
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