
MATH 3162 Homework Assignment 2 Solutions

4.4.13(a): Assume that f : A → R is uniformly continuous on A and that
(xn) is a Cauchy sequence in A. Choose any ε > 0. By definition of uniform
continuity, there exists δ > 0 so that for any a, b ∈ A with |a− b| < δ, it is true
that |f(a)−f(b)| < ε. Since (xn) is Cauchy, there exists N so that for n,m > N ,
|xn − xm| < δ. Therefore, |f(xn) − f(xm)| < ε. But we have then shown that
for any ε > 0, there exists N so that n,m > N implies |f(xn)−f(xm)| < ε, and
so by definition (f(xn)) is Cauchy.

�

4.5.2(a): There are many examples of such objects. For instance, define f(x) =
sinx on (0, 2π). Clearly f is continuous on (0, 2π), and f((0, 2π)) = [−1, 1].

�

4.5.2(b): This is impossible; any closed interval is compact, and so f([a, b])
must be compact, but no open interval is compact.

�

4.5.2(c): There are many examples. For instance, define f(x) = 1
1−x2 on

(−1, 1). Clearly f is continuous on (−1, 1), and f(−1, 1) = [1,∞), which is
closed and unbounded, but not R.

�

4.5.3: Assume that f is increasing on [a, b] and satisfies the Intermediate Value
Property. Choose any c ∈ [a, b]; we want to show that f is continuous at c.
Start with the case c ∈ (a, b), and choose any ε > 0. We claim that we can
find m,M so that m < c < M and f(m) > f(c) − ε, f(M) < f(c) + ε. If
f(a) ≥ f(c) − 0.5ε, then just define m = a. If f(a) < f(c) − 0.5ε, then we can
use the Intermediate Value Theorem (with L = f(c) − 0.5ε) to find m ∈ (a, c)
for which f(m) = f(c) − 0.5ε > f(c) − ε. Similarly, if f(b) ≤ f(c) + 0.5ε, then
just define M = b. If f(b) > f(c) + 0.5ε, then we can use the Intermediate
Value Theorem (with L = f(c) + 0.5ε) to find M ∈ (c, b) for which f(M) =
f(c)+0.5ε < f(c)+ε. Now, just define δ = min(c−m,M−c). If |x−c| < δ, then
x ∈ (c− δ, c+ δ) ⊂ (m,M), and so since f is increasing, f(m) ≤ f(x) ≤ f(M),
meaning that f(c) − ε < f(x) < f(c) + ε =⇒ |f(x) − f(c)| < ε. Since ε was
arbitrary, we have verified continuity of f at c.

We still have to deal with the cases c = a or c = b. If c = a, choose any
ε > 0. We proceed just as above to find M > a so that f(M) < f(a) + ε.
Then, just define δ = M − a. If |x − a| < δ, then x ∈ (a − δ, a + δ), and since
f is defined only on [a, b], in fact a ≤ x < M . Then, since f is increasing,
f(a) ≤ f(x) ≤ f(M) =⇒ f(a) ≤ f(x) < f(a) + ε =⇒ |f(x) − f(a)| < ε, and
again we verified continuity of f at a. The proof for c = b is almost identical.



�

5.2.6(a): By definition, we know that g′(c) = limx→c
f(x)−f(c)

x−c . We claim

that also g′(c) = limh→0
f(c+h)−f(c)

h . To see this, take any sequence hn →
0 where hn 6= 0 for all n. Then define xn = c + hn; clearly xn → c and

xn 6= c for all c. Therefore, by definition of limit, f(xn)−f(c)
xn−c → g′(c). But

f(xn)−f(c)
xn−c = f(cn+h)−f(c)

h , and so we know that f(cn+h)−f(c)
h → g′(c). Since

(hn) was arbitrary, we’ve shown that g′(c) = limh→0
f(c+h)−f(c)

h .

�

Extra problem 1: Assume that f is continuous and 1-1 on [a, b]. Since f
is 1-1, either f(a) < f(b) or f(a) > f(b). Let’s start with the case where
f(a) < f(b). We wish to prove that in this case, f is strictly increasing on [a, b].
Choose an arbitrary pair x, y with x < y, and assume for a contradiction that
f(x) ≥ f(y). Again, since f is 1-1, f(x) 6= f(y), and so f(x) > f(y). We claim
that either f(a) < f(y) or f(x) < f(b). Indeed, if neither of these were true,
then f(y) ≤ f(a) < f(b) ≤ f(x), meaning that f(y) < f(x), which is false. We
now have two cases.

Case 1: f(a) < f(y). Then f(a) < f(y) < f(x) and a < x < y (note
that a 6= x since f(a) 6= f(x)). So, by the Intermediate Value Theorem (with
L = f(y)), there exists c ∈ (a, x) so that f(c) = f(y). However, this contradicts
the fact that f is 1-1; c < x < y, so c 6= y, but f(c) = f(y).

Case 2: f(x) < f(b). Then f(y) < f(x) < f(b) and x < y < b (note
that y 6= b since f(y) 6= f(b)). So, by the Intermediate Value Theorem (with
L = f(x)), there exists c ∈ (y, b) so that f(c) = f(x). However, this contradicts
the fact that f is 1-1; x < y < c, so c 6= x, but f(c) = f(x).

In each case we have a contradiction, so our original assumption was wrong,
i.e. f(x) < f(y). Since x < y in [a, b] were arbitrary, we’ve shown that f
is strictly increasing on [a, b] when f(a) < f(b). The proof that f is strictly
decreasing when f(a) > f(b) is almost identical. (Or, you could replace f with
−f to say that this fact follows without loss of generality!)

�

Extra problem 2: Assume that f is continuous on [a, b], f(a) < 0 < f(b),
and define S = {x : f(x) ≤ 0}. Define c = supS. Assume for a contradiction
that f(c) < 0. Then we define ε = −f(c) (remember that f(c) is negative,
so ε > 0), and by definition of continuity, there exists δ > 0 so that for every
x ∈ (c − δ, c + δ), f(x) ∈ (f(c) − ε, f(c) + ε) = (2f(c), 0). In particular, this
means that f(c + 0.5δ) < 0. However, then by definition c + 0.5δ ∈ S, which
means that c is not an upper bound of S, a contradiction to definition of supS.
Therefore, our original assumption was wrong, and f(c) is not negative.

�
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Extra problem 3: Assume that f : R → R is differentiable on R and that

f ′(c) > 0. Then by definition of derivative, if we define d(x) = f(x)−f(c)
x−c , then

limx→c d(x) = f ′(c). Choose ε = f ′(c). Then by definition of convergence, there
exists δ > 0 so that for every x ∈ (c − δ, c + δ), d(x) ∈ (f ′(c) − ε, f ′(c) + ε) =
(0, 2f ′(c)). In particular, d(c− 0.5δ) > 0 and d(c+ 0.5δ) > 0. Then,

d(c− 0.5δ) =
f(c− 0.5δ)− f(c)

c− 0.5δ − c
=
f(c− 0.5δ)− f(c)

−0.5δ
> 0,

which means that f(c−0.5δ)−f(c) < 0 =⇒ f(c) > f(c−0.5δ). Therefore, f(c)
is not a minimum value of f(x) on R. Similarly,

d(c+ 0.5δ) =
f(c+ 0.5δ)− f(c)

c+ 0.5δ − c
=
f(c+ 0.5δ)− f(c)

0.5δ
> 0,

which means that f(c+0.5δ)−f(c) > 0 =⇒ f(c) < f(c−0.5δ). Therefore, f(c)
is not a maximum value of f(x) on R.

�

Extra problem 4: (a) Assume that f ′(x) 6= 0 for all x ∈ [a, b]. Then there
cannot be values y, z ∈ [a, b] with 0 between f ′(y) and f ′(z); otherwise, by
Darboux’s Theorem, there would exist c between y and z with f ′(c) = 0, a
contradiction. So, either f ′(x) > 0 for all x ∈ [a, b] or f ′(x) < 0 for all x ∈ [a, b].

(b) By part (a), either f ′(x) > 0 for all x ∈ [a, b] or f ′(x) < 0 for all x ∈ [a, b].
Assume that f ′(x) > 0 for all x ∈ [a, b]. Then, for every y < z ∈ [a, b], by

the Mean Value Theorem, there exists c ∈ [y, z] with f ′(c) = f(z)−f(y)
z−y . Since

f ′(c) > 0 by assumption, and z−y > 0, it must be true that f(z)−f(y) > 0, i.e.
f(y) < f(z). Since y < z were arbitrary, this shows that f is strictly increasing
on [a, b]. If instead it were the case that f ′(x) < 0 for all x ∈ [a, b], then virtually
the same proof shows that f is strictly decreasing on [a, b].
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