4.4.13(a): Assume that \(f : A \rightarrow \mathbb{R} \) is uniformly continuous on \(A \) and that \((x_n) \) is a Cauchy sequence in \(A \). Choose any \(\epsilon > 0 \). By definition of uniform continuity, there exists \(\delta > 0 \) so that for any \(a, b \in A \) with \(|a - b| < \delta \), it is true that \(|f(a) - f(b)| < \epsilon \). Since \((x_n) \) is Cauchy, there exists \(N \) so that for \(n, m > N \), \(|x_n - x_m| < \delta \). Therefore, \(|f(x_n) - f(x_m)| < \epsilon \). But we have then shown that for any \(\epsilon > 0 \), there exists \(N \) so that \(n, m > N \) implies \(|f(x_n) - f(x_m)| < \epsilon \), and so by definition \((f(x_n)) \) is Cauchy.

4.5.2(a): There are many examples of such objects. For instance, define \(f(x) = \sin(x) \) on \((0, 2\pi)\). Clearly \(f \) is continuous on \((0, 2\pi)\), and \(f([0, 2\pi]) = [-1, 1] \).

4.5.2(b): This is impossible; any closed interval is compact, and so \(f([a,b]) \) must be compact, but no open interval is compact.

4.5.2(c): There are many examples. For instance, define \(f(x) = \frac{1}{x^2} \) on \((-1, 1)\). Clearly \(f \) is continuous on \((-1, 1)\), and \(f(-1, 1) = [1, \infty) \), which is closed and unbounded, but not \(\mathbb{R} \).

4.5.3: Assume that \(f \) is increasing on \([a, b]\) and satisfies the Intermediate Value Property. Choose any \(c \in [a, b] \); we want to show that \(f \) is continuous at \(c \). Start with the case \(c \in (a, b) \), and choose any \(\epsilon > 0 \). We claim that we can find \(m, M \) so that \(m < c < M \) and \(f(m) > f(c) - \epsilon \), \(f(M) < f(c) + \epsilon \). If \(f(a) \geq f(c) - 0.5\epsilon \), then just define \(m = a \). If \(f(a) < f(c) - 0.5\epsilon \), then we can use the Intermediate Value Theorem (with \(L = f(c) - 0.5\epsilon \)) to find \(m \in (a, c) \) for which \(f(m) = f(c) - 0.5\epsilon > f(c) - \epsilon \). Similarly, if \(f(b) \leq f(c) + 0.5\epsilon \), then just define \(M = b \). If \(f(b) > f(c) + 0.5\epsilon \), then we can use the Intermediate Value Theorem (with \(L = f(c) + 0.5\epsilon \)) to find \(M \in (c, b) \) for which \(f(M) = f(c) + 0.5\epsilon < f(c) + \epsilon \). Now, just define \(\delta = \min(c-m, M-c) \). If \(|x-c| < \delta \), then \(x \in (c-\delta, c+\delta) \subset (m, M) \), and so since \(f \) is increasing, \(f(m) \leq f(x) \leq f(M) \), meaning that \(f(c) - \epsilon < f(x) < f(c) + \epsilon \implies |f(x) - f(c)| < \epsilon \). Since \(\epsilon \) was arbitrary, we have verified continuity of \(f \) at \(c \).

We still have to deal with the cases \(c = a \) or \(c = b \). If \(c = a \), choose any \(\epsilon > 0 \). We proceed just as above to find \(M > a \) so that \(f(M) < f(a) + \epsilon \). Then, just define \(\delta = M - a \). If \(|x-a| < \delta \), then \(x \in (a - \delta, a + \delta) \), and since \(f \) is defined only on \([a, b] \), in fact \(a \leq x < M \). Then, since \(f \) is increasing, \(f(a) \leq f(x) \leq f(M) \implies f(a) \leq f(x) < f(a) + \epsilon \implies |f(x) - f(a)| < \epsilon \), and again we verified continuity of \(f \) at \(a \). The proof for \(c = b \) is almost identical.
Therefore, our original assumption was wrong, and
\[f \in x \]
that \(\epsilon > 0 \) for all \(n \). Then define \(x_n = c + h_n \); clearly \(x_n \to c \) and \(x_n \neq c \) for all \(c \). Therefore, by definition of limit, \(\frac{f(x_n) - f(c)}{x_n - c} \to g'(c) \). But
\[\frac{f(x_n) - f(c)}{x_n - c} = \frac{f(x_n + h) - f(c)}{h} \]
and so we know that \(\frac{f(x_n + h) - f(c)}{h} \to g'(c) \). Since
\[(h_n) \text{ was arbitrary, we've shown that } g'(c) = \lim_{h \to 0} \frac{f(c + h) - f(c)}{h}. \]

Extra problem 1: Assume that \(f \) is continuous and 1-1 on \([a, b]\). Since \(f \) is 1-1, either \(f(a) < f(b) \) or \(f(a) > f(b) \). Let’s start with the case where \(f(a) < f(b) \). We wish to prove that in this case, \(f \) is strictly increasing on \([a, b]\). Choose an arbitrary pair \(x, y \) with \(x < y \), and assume for a contradiction that \(f(x) \geq f(y) \). Again, since \(f \) is 1-1, \(f(x) \neq f(y) \), and so \(f(x) > f(y) \). We claim that either \(f(a) < f(y) \) or \(f(x) < f(b) \). Indeed, if neither of these were true, then \(f(y) \leq f(a) < f(b) \leq f(x) \), meaning that \(f(y) < f(x) \), which is false. We now have two cases.

Case 1: \(f(a) < f(y) \). Then \(f(a) < f(y) < f(x) \) and \(a < x < y \) (note that \(a \neq x \) since \(f(a) \neq f(x) \)). So, by the Intermediate Value Theorem (with \(L = f(y) \)), there exists \(c \in (a, x) \) so that \(f(c) = f(y) \). However, this contradicts the fact that \(f \) is 1-1; \(c < x < y \), so \(c \neq y \), but \(f(c) = f(y) \).

Case 2: \(f(x) < f(b) \). Then \(f(y) < f(x) < f(b) \) and \(x < y < b \) (note that \(y \neq b \) since \(f(y) \neq f(b) \)). So, by the Intermediate Value Theorem (with \(L = f(x) \)), there exists \(c \in (y, b) \) so that \(f(c) = f(x) \). However, this contradicts the fact that \(f \) is 1-1; \(x < y < b \), so \(c \neq x \), but \(f(c) = f(x) \).

In each case we have a contradiction, so our original assumption was wrong, i.e. \(f(x) < f(y) \). Since \(x < y \) in \([a, b]\) were arbitrary, we’ve shown that \(f \) is strictly increasing on \([a, b]\) when \(f(a) < f(b) \). The proof that \(f \) is strictly decreasing when \(f(a) > f(b) \) is almost identical. (Or, you could replace \(f \) with \(-f\) to say that this fact follows without loss of generality!)

Extra problem 2: Assume that \(f \) is continuous on \([a, b]\), \(f(a) < 0 < f(b) \), and define \(S = \{ x : f(x) \leq 0 \} \). Define \(c = \sup S \). Assume for a contradiction that \(f(c) < 0 \). Then we define \(\epsilon = -f(c) \) (remember that \(f(c) \) is negative, so \(\epsilon > 0 \)), and by definition of continuity, there exists \(\delta > 0 \) so that for every \(x \in (c - \delta, c + \delta) \), \(f(x) \in (f(c) - \epsilon, f(c) + \epsilon) = (2f(c), 0) \). In particular, this means that \(f(c + 0.5\delta) < 0 \). However, then by definition \(c + 0.5\delta \in S \), which means that \(c \) is not an upper bound of \(S \), a contradiction to definition of sup \(S \). Therefore, our original assumption was wrong, and \(f(c) \) is not negative.
Extra problem 3: Assume that \(f : \mathbb{R} \to \mathbb{R} \) is differentiable on \(\mathbb{R} \) and that \(f'(c) > 0 \). Then by definition of derivative, if we define \(d(x) = \frac{f(x) - f(c)}{x - c} \), then \(\lim_{x \to c} d(x) = f'(c) \). Choose \(\epsilon = f'(c) \). Then by definition of convergence, there exists \(\delta > 0 \) so that for every \(x \in (c - \delta, c + \delta) \), \(d(x) \in (f'(c) - \epsilon, f'(c) + \epsilon) = (0, 2f'(c)) \). In particular, \(d(c - 0.5\delta) > 0 \) and \(d(c + 0.5\delta) > 0 \). Then,

\[
d(c - 0.5\delta) = \frac{f(c - 0.5\delta) - f(c)}{c - 0.5\delta - c} = \frac{f(c) - f(c)}{-0.5\delta} > 0,
\]

which means that \(f(c - 0.5\delta) - f(c) < 0 \implies f(c) > f(c - 0.5\delta) \). Therefore, \(f(c) \) is not a minimum value of \(f(x) \) on \(\mathbb{R} \). Similarly,

\[
d(c + 0.5\delta) = \frac{f(c + 0.5\delta) - f(c)}{c + 0.5\delta - c} = \frac{f(c + 0.5\delta) - f(c)}{0.5\delta} > 0,
\]

which means that \(f(c + 0.5\delta) - f(c) > 0 \implies f(c) < f(c + 0.5\delta) \). Therefore, \(f(c) \) is not a maximum value of \(f(x) \) on \(\mathbb{R} \).

\[\blacksquare\]

Extra problem 4: (a) Assume that \(f'(x) \neq 0 \) for all \(x \in [a, b] \). Then there cannot be values \(y, z \in [a, b] \) with \(0 \) between \(f'(y) \) and \(f'(z) \); otherwise, by Darboux’s Theorem, there would exist \(c \) between \(y \) and \(z \) with \(f'(c) = 0 \), a contradiction. So, either \(f'(x) > 0 \) for all \(x \in [a, b] \) or \(f'(x) < 0 \) for all \(x \in [a, b] \).

(b) By part (a), either \(f'(x) > 0 \) for all \(x \in [a, b] \) or \(f'(x) < 0 \) for all \(x \in [a, b] \). Assume that \(f'(x) > 0 \) for all \(x \in [a, b] \). Then, for every \(y < z \in [a, b] \), by the Mean Value Theorem, there exists \(c \in [y, z] \) with \(f'(c) = \frac{f(z) - f(y)}{z - y} \). Since \(f'(c) > 0 \) by assumption, and \(z - y > 0 \), it must be true that \(f(z) - f(y) > 0 \), i.e. \(f(y) < f(z) \). Since \(y < z \) were arbitrary, this shows that \(f \) is strictly increasing on \([a, b] \). If instead it were the case that \(f'(x) < 0 \) for all \(x \in [a, b] \), then virtually the same proof shows that \(f \) is strictly decreasing on \([a, b] \).

\[\blacksquare\]