MATH 3162 Homework Assignment 2 Solutions

4.4.13(a): Assume that f : A — R is uniformly continuous on A and that
(zy,) is a Cauchy sequence in A. Choose any € > 0. By definition of uniform
continuity, there exists § > 0 so that for any a,b € A with |a — b| < ¢, it is true
that |f(a)— f(b)] < e. Since (x,,) is Cauchy, there exists N so that for n,m > N,
|€pn — @m| < . Therefore, |f(zn) — f(@m)| < €. But we have then shown that
for any € > 0, there exists N so that n,m > N implies | f(z,) — f(zm)| < €, and
so by definition (f(x,)) is Cauchy.

4.5.2(a): There are many examples of such objects. For instance, define f(z) =
sinz on (0,27). Clearly f is continuous on (0, 27), and f((0,27)) = [-1, 1].

4.5.2(b): This is impossible; any closed interval is compact, and so f([a,b])
must be compact, but no open interval is compact.

4.5.2(c): There are many examples. For instance, define f(z) = = on
(=1,1). Clearly f is continuous on (—1,1), and f(-1,1) = [1,00), Wthh is
closed and unbounded, but not R.

4.5.3: Assume that f is increasing on [a, b] and satisfies the Intermediate Value
Property. Choose any ¢ € [a,b]; we want to show that f is continuous at c.
Start with the case ¢ € (a,b), and choose any € > 0. We claim that we can
find m, M so that m < ¢ < M and f(m) > f(c) —¢, f(M) < f(c) +e If
f(a) > f(c) — 0.5¢, then just define m = a. If f(a) < f(c) — 0.5¢, then we can
use the Intermediate Value Theorem (with L = f(c¢) — 0.5¢) to find m € (a,c)
for which f(m) = f(c) — 0.5e > f(c¢) — e. Similarly, if f(b) < f(c) + 0.5¢, then
just define M = b. If f(b) > f(c) + 0.5¢, then we can use the Intermediate
Value Theorem (with L = f(c) + 0.5¢) to find M € (c,b) for which f(M) =
f(e)+0.5¢ < f(c)+e. Now, just define § = min(c—m, M —c). If |[z—¢| < J, then
x € (¢c—0,c+6) C (m, M), and so since f is increasing, f(m) < f(z) < f(M),
meaning that f(c) —e < f(z) < f(c) + ¢ = |f(x) — f(c)| < e. Since € was
arbitrary, we have verified continuity of f at c.

We still have to deal with the cases ¢ = a or ¢ = b. If ¢ = a, choose any
e > 0. We proceed just as above to find M > a so that f(M) < f(a) + €
Then, just define 6 = M —a. If |z — a| < J, then x € (a — §,a + 9), and since
f is defined only on [a,b], in fact a < & < M. Then, since f is increasing,
fla) < f(x) < (M) = f(a) < f(z) < f(a) + e = [f(2) = f(a)] <€ and

again we verified continuity of f at a. The proof for ¢ = b is almost identical.



5.2.6(a): By definition, we know that ¢'(c) = hmz_,CM. We claim

xr—c
that also ¢'(¢) = limp_0 w To see this, take any sequence h,, —
0 where h, # 0 for all n. Then define x, = ¢+ hyp; clearly z, — ¢ and
xn # c¢ for all ¢. Therefore, by definition of limit, M_f(c) — ¢'(c). But

€T, —

flen)—fle) _ f(C”'+}}LL)_f(C), and so we know that 7f(c"+},;)_f(c) — ¢'(c). Since
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(h,,) was arbitrary, we’ve shown that ¢’(c) = limy_g w
|

Extra problem 1: Assume that f is continuous and 1-1 on [a,b]. Since f
is 1-1, either f(a) < f(b) or f(a) > f(b). Let’s start with the case where
f(a) < f(b). We wish to prove that in this case, f is strictly increasing on [a, b].
Choose an arbitrary pair x,y with < y, and assume for a contradiction that
f(z) > f(y). Again, since f is 1-1, f(z) # f(y), and so f(z) > f(y). We claim
that either f(a) < f(y) or f(xz) < f(b). Indeed, if neither of these were true,
then f(y) < f(a) < f(b) < f(x), meaning that f(y) < f(x), which is false. We
now have two cases.

Case 1: f(a) < f(y). Then f(a) < f(y) < f(z) and a < = < y (note
that a # x since f(a) # f(x)). So, by the Intermediate Value Theorem (with
L = f(y)), there exists ¢ € (a,x) so that f(c) = f(y). However, this contradicts
the fact that fis 1-1; c < z <y, so ¢ # y, but f(c) = f(y).

Case 2: f(z) < f(b). Then f(y) < f(z) < f(b) and z < y < b (note
that y # b since f(y) # f(b)). So, by the Intermediate Value Theorem (with
L = f(x)), there exists ¢ € (y,b) so that f(c) = f(x). However, this contradicts
the fact that fis 1-1; 2 < y < ¢, so ¢ # x, but f(c) = f(x).

In each case we have a contradiction, so our original assumption was wrong,
ie. f(x) < f(y). Since z < y in [a,b] were arbitrary, we’ve shown that f
is strictly increasing on [a,b] when f(a) < f(b). The proof that f is strictly
decreasing when f(a) > f(b) is almost identical. (Or, you could replace f with
—f to say that this fact follows without loss of generality!)

Extra problem 2: Assume that f is continuous on [a,b], f(a) < 0 < f(b),
and define S = {z : f(z) < 0}. Define ¢ = sup S. Assume for a contradiction
that f(¢) < 0. Then we define € = —f(c) (remember that f(c) is negative,
so € > 0), and by definition of continuity, there exists § > 0 so that for every
z € (c—6,c+9), f(x) € (f(c)—€ f(c) +€) = (2f(c),0). In particular, this
means that f(c+ 0.55) < 0. However, then by definition ¢ + 0.50 € S, which
means that ¢ is not an upper bound of S, a contradiction to definition of sup S.
Therefore, our original assumption was wrong, and f(c) is not negative.



Extra problem 3: Assume that f : R — R is differentiable on R and that
f'(c) > 0. Then by definition of derivative, if we define d(z) = W, then
lim, . d(x) = f'(c¢). Choose € = f’(c). Then by definition of convergence, there
exists ¢ > 0 so that for every x € (¢ — d,¢+9), d(x) € (f'(c) —¢€, f'(c) +¢€) =
(0,2f'(c)). In particular, d(c — 0.56) > 0 and d(c + 0.55) > 0. Then,

Jle=050) = f(e) _ fle=050) — (0
c—0.50 —¢ —0.56

d(c—0.56) = >0,

which means that f(c—0.50) — f(¢) < 0 = f(c) > f(c—0.56). Therefore, f(c)

is not a minimum value of f(x) on R. Similarly,

f(c+0.50) — f(c)  f(c+0.56) — f(c)

d(e+0.50) = c+055—¢c 0.5

>0,

which means that f(c+0.50) — f(c) > 0 = f(c) < f(c—0.56). Therefore, f(c)
is not a maximum value of f(x) on R.

Extra problem 4: (a) Assume that f/(z) # 0 for all € [a,b]. Then there
cannot be values y,z € [a,b] with 0 between f'(y) and f’(z); otherwise, by
Darboux’s Theorem, there would exist ¢ between y and z with f'(¢) = 0, a
contradiction. So, either f'(x) > 0 for all z € [a,b] or f'(z) < 0 for all = € [a, b].

(b) By part (a), either f'(x) > 0 for all « € [a,b] or f/'(x) < 0 for all z € [a,b].
Assume that f'(x) > 0 for all © € [a,b]. Then, for every y < z € [a,b], by
the Mean Value Theorem, there exists ¢ € [y, 2] with f'(¢) = %ﬁy) Since
f'(¢) > 0 by assumption, and z—y > 0, it must be true that f(z)— f(y) > 0, i.e.
f(y) < f(2). Since y < z were arbitrary, this shows that f is strictly increasing
on [a,b]. If instead it were the case that f/'(z) < 0 for all z € [a, ], then virtually
the same proof shows that f is strictly decreasing on [a, b].



