
MATH 3162 Homework Assignment 3 Solutions

5.2.9(a): Suppose that f ′ exists on [a, b] and is not constant. Then there exist
x < y ∈ [a, b] so that f ′(x) 6= f ′(y). Since Qc is dense, there exists an irrational
number α between f ′(x) and f ′(y), and so by Darboux’s Theorem, there exists
c ∈ (x, y) so that f ′(c) = α. Therefore, f ′ indeed must achieve an irrational
value.

�

5.3.7: Assume for a contradiction that f is differentiable on an interval (a, b),
f ′(x) 6= 1 on (a, b), and f has two fixed points there, i.e. there exist x < y in
(a, b) for which f(x) = x and f(y) = y. Then, f is differentiable on [x, y], and so

by the Mean Value Theorem there exists c ∈ (x, y) so that f ′(c) = f(y)−f(x)
y−x =

y−x
y−x = 1. This is a contradiction to the assumption that f ′ never equals 1, so
our original assumption was wrong and so f has at most one fixed point on
(a, b).

�

5.3.8: Choose any sequence (xn) approaching 0 where xn > 0 for all n. For
every n, f is differentiable on (0, xn), and so by the Mean Value Theorem, there

exists cn ∈ (0, xn) so that f ′(cn) = f(xn)−f(0)
xn−0 . Since 0 < cn < xn and xn → 0,

cn → 0 as well, and so f ′(cn) approaches L since we know that limx→0 f
′(x) = L.

But this implies that f(xn)−f(0)
xn−0 approaches L. Since (xn) was arbitrary, we’ve

shown by definition that

lim
x→0+

f(x)− f(0)

x− 0
= L.

A nearly identical proof shows that

lim
x→0−

f(x)− f(0)

x− 0
= L.

Therefore,

lim
x→0

f(x)− f(0)

x− 0
= L,

implying that f ′(0) = L.

�

5.4.5: By definition of g,

g(xm) = g(2−m) = h(2−m)+2−1h(2−m+1)+2−2h(2−m+2)+. . .+2−mh(1)+2−m−1h(2)+. . .



Since h(x) = 2 for every even integer x and h(x) = x for 0 < x < 1, we can
rewrite as

g(xm) = g(2−m) = 2−m+2−12−m+1+2−22−m+2+. . .+2−m1 = 2−m+2−m+. . .+2−m = (m+1)2−m.

Therefore,
g(xm)− g(0)

xm − 0
=

(m+ 1)2−m − 0

2−m − 0
= m+ 1.

�

6.2.1(a): For every x 6= 0, we claim that fn(x)→ 1
x . To see this, note that we

can rewrite
fn(x) =

x

1/n+ x2
.

Since 1/n → 0 as n → ∞, fn(x) → x
x2 = 1

x since x 6= 0. On the other hand, if
x = 0, then fn(x) = fn(0) = 0

1 = 0 for all n, and so fn(0)→ 0.
Therefore, (fn) approaches the limit f pointwise, where f is defined by

f(0) = 0 and f(x) = 1
x for x 6= 0.

�

6.2.1(b): No, it is not. To see this, fix ε = 1, and we will demonstrate, for
every N ∈ N, examples of x ∈ (0,∞) and n > N so that |fn(x)− f(x)| ≥ ε.

Specifically, for every N , define n = N+1 and x = 1
N+1 . Then f(x) = N+1,

and fn(x) = (N+1)x
1+(N+1)x2 = 1

1+ 1
N+1

= N+1
N+2 < 1. Therefore, |fn(x)− f(x)| ≥ N ≥

1 = ε, completing the proof of the negation of uniform convergence.

�

6.2.1(d): Yes, it is. To see this, write

|f(x)− fn(x)| =
∣∣∣∣ 1

x
− nx

1 + nx2

∣∣∣∣ =

∣∣∣∣1 + nx2 − nx2

x(1 + nx2)

∣∣∣∣ =
1

x(1 + nx2)
.

For every x > 1, x(1+nx2) > n, and so for every x ∈ (1,∞), |f(x)−fn(x)| <
1
n . Then, for every ε > 0, you can choose N for which 1

N < ε, and then for
every n > N and every x ∈ (1,∞), |f(x)− fn(x)| < 1

n <
1
N < ε, completing the

proof of uniform convergence.

�

6.2.7: Suppose that f is uniformly continuous on R. Choose any ε > 0, and
choose δ so that for all x, y ∈ R, |x− y| < δ =⇒ |f(x)− f(y)| < ε. Then, by the
Archimedean Principle, there exists N so that 1

N < δ. Then, for every x ∈ R
and every n > N , |(x + 1/n) − x| = 1/n < 1

N < δ, and so by definition of δ,
|f(x + 1/n) − f(x)| < ε. But this means that |fn(x) − f(x)| < ε, and since
n > N and x was arbitrary, this proves that fn → f uniformly.
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6.2.8: Suppose that gn are all continuous on a compact set K, gn → g uniformly
on K, and g(x) 6= 0 for all x ∈ K. First, g is the uniform limit of continuous
functions, and so g is continuous on K. If g(x) could be both positive and
negative for values x ∈ K, then by the Intermediate Value Theorem, there
would exist c where g(c) = 0, a contradiction. Therefore, g is either positive for
all x ∈ K or negative for all x ∈ K. We’ll first treat the first case, i.e. g(x) > 0
for all x ∈ K. Since K is compact, g achieves a minimum on K, i.e. there
exists c so that g(c) ≤ g(x) for all x ∈ K. We’ll use M to denote g(c); note that
M > 0.

Choose any ε > 0. Apply uniform convergence with M
2 . This yields N1 so

that for every n > N1 and x ∈ K, |gn(x) − g(x)| < M
2 . For any such n and x,

|gn(x)| ≥ |g(x)|− |g(x)−gn(x)| > M− M
2 = M

2 by the triangle inequality. Now,
again by uniform convergence, choose N2 so that for every n > N2 and x ∈ K,

|gn(x) − g(x)| < εM2

2 , and define N = max(N1, N2). Then, for any n > N ,
clearly n > N1 and n > N2. Then, for any x ∈ K,∣∣∣∣ 1

g(x)
− 1

gn(x)

∣∣∣∣ =
|gn(x)− g(x)|
|g(x)||gn(x)|

<
εM2/2

M · (M/2)
= ε

since |gn(x)− g(x)| < εM2

2 (using n > N2), |g(x)| ≥M > 0 (using the fact that

M = f(c) is the minimum of f(x) on K), and |gn(x)| ≥ M
2 > 0 (using n > N1).

Since x ∈ K and n > N were arbitrary, 1
gn(x)

→ 1
g(x) uniformly.

If instead g is negative on all of K, then a similar argument can be used
with M equal to the negative of the maximum of g on K.

�
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