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1 Problem Statement 6.3.4
Let

hn(x) =
sin(nx)√

n

Show that hn(x)→ 0 uniformly on R but that the sequence of derivatives h′n(x) diverges for every
x ∈ R.

1.1 Solution
Since

lim
n→∞

|hn(x)| ≤ lim
n→∞

1√
n

= 0,

we know that limn→∞ hn(x) = 0.
Let ε > 0, then there exists an N ∈ N such that N > 1

ε2
. Then for all x ∈ R and for all n ≥ N ,

|hn(x)| < 1√
N
< ε. Therefore hn(x)→ 0 uniformly on R.

For all n,
h′n(x) = n

1
2 cos(nx).

1.1.1 Claim: limn→∞ cos(nx) does not converge to 0 for all x0.

Proof of Claim:
Let x0 ∈ R.
Then if limn→∞ cos(nx0) → l we must also have that limn→∞ cos(2nx0) = l. Therefore by the
double angle formula, limn→∞ 2cos(nx0)

2−1 = l. Substituting in for l we have 2l2−1 = l. By the
quadratic formula we have l = 1 or −1

2
and not 0. Therefore, limn→∞ cos(nx0) does not converge

to 0 for all x0.
End of proof of Claim.

We have that for all x ∈ R, limn→∞ cos(nx) 6= 0 and limn→∞ n
1
2 =∞, therefore limn→∞ n

1
2 cos(nx)

diverges. Therefore limn→∞ h
′
n(x) diverges.
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2 Problem Statement 6.3.7
Use the Mean Value Theorem to supply a proof for Theorem 6.3.2. To get started, observe that the
triangle inequality implies that, for any x ∈ [a, b] and m,n ∈ N,

|fn(x)− fm(x)| ≤ |(fn(x)− fm(x))− (fn(x0)− fm(x0))|+ |fn(x0)− fm(x0)|.

2.1 Theorem 6.3.2
Let (fn) be a sequence of differentiable functions defined on the closed interval [a, b], and assume
(f ′n) converges uniformly to a function on [a, b]. If there exists a point x0 ∈ [a, b] for which fn(x0)
is convergent, then (fn) converges uniformly on [a, b].

2.2 Solution
Let fn be a sequence of differentiable functions defined on [a, b] such that (f ′n) converges uniformly
to a function g on [a, b] where fn(x0) converges to l.
Let ε > 0
Since limn→∞ fn(x0) = l, there exists an N ′ ∈ N such that for all n > N ′,
|fn(x0)− fm(x0)| < ε

2
.

Since (f ′n)→ g uniformly, there exists an N̄ such that for all n,m ≥ N̄ , |f ′n(x)− f ′m(x)| < ε
2(b−a) .

Let N = Max{N ′, N̄}.
Let x ∈ [a, b] and n,m > N . Certainly |fn(x0)− fm(x0)| < ε

2
.

Since fn and fm are continuous and differentiable, fn,m = fn − fm is also continuous and
differentiable. Notice f ′n,m = f ′n − f ′m. We have that

|(fn(x)− fm(x))− (fn(x0)− fm(x0))| = |(fn,m(x)− fn,m(x0)|

.
Then |(fn,m(x)− fn,m(x0)| < ε

2
if and only if |(fn,m(x)−fn,m(x0)|

|x0−x| < ε
2|x0−x| .

By the Mean Value Theorem, there exists xn,m ∈ [a, b] such that f ′n,m(xn,m) = fn,m(x)−fn,m(x0)

x0−x .
Since n,m > N ,

|fn,m(x)− fn,m(x0)|
|x0 − x|

= |f ′n,m(xn,m)| = |f ′n(xn,m)− f ′m(xn,m)| < ε

2(b− a)
<

ε

2|x0 − x|
.

Therefore, |(fn,m(x)− fn,m(x0)| < ε
2
.

Finally,

|fn(x)− fm(x)| ≤ |(fn(x)− fm(x))− (fn(x0)− fm(x0))|+ |fn(x0)− fm(x0)| < .
ε

2
+
ε

2
< ε.

By the Cauchy Criterion for Uniform Convergence, (fn) converges uniformly on [a, b].

3 Problem Statement 6.4.1
Supply the details for the proof of the Weierstrass M-Test (Corollary 6.4.5)
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3.1 Corollary 6.4.5
For each n ∈ N, let fn be a function defined on a set A ⊆ R, and let Mn > 0 be a real number
satisfying

|fn(x)| ≤Mn

for all x ∈ A. If
∑∞

n=1Mn converges, then
∑∞

n=1 fn converges uniformly on A.

4 Solution
Suppose that sm =

∑m
i=1Mi and limn→∞ sm converges. Then (sm) is Cauchy.

Let yn =
∑n

i=1 fi.
Let ε > 0.

Then there exists an N ∈ N such that for all n,m ≥ N , we have that |sn − sm| < ε.
For all n > m ≥ N we have that

|yn − ym| = |fm+1 + fm+2 + fm+3 + ...+ fn| ≤ |fm+1|+ |fm+2|+ |fm+3|+ ...+ |fn| ≤

|Mm+1 +Mm+2 +Mm+3 + ...+Mn| ≤ |sn − sm| < ε.

By the Cauchy Criterion for Uniform Convergence of Series,
∑∞

n=1 fn converges uniformly on A.
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