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1 Problem Statement 6.5.10
Let g(x) =

∑∞
n=0 bnx

n converge on (−R,R), and assume xn → 0 with xn 6= 0. If g(xn) = 0 for
all n ∈ N, show that g(x) must be identically zero on all of (−R,R).

1.1 Solution
Since g(x) converges on (−R,R), by Thm 6.5.7, we have that g is continuous on (−R,R), in-
finitely differentiable on (−R,R), and that successive derivatives can be obtained via term-by-term
differentiation. Let g(i)(x) be the ith derivative of g. Notice that for all x ∈ (−R,R),

g(i)(x) =
∞∑
n=i

n!

(n− i)!
bnx

n−i.

Then

g(0)(0) =
∞∑
n=0

bn0n = b00
0 + b10

1 + b20
2 + ... = b0

and more generally

g(i)(0) =
∞∑
n=i

n!

(n− i)!
bn0n−i = i!bi0

0 +
(i + 1)!

2
01 + ... = i!bi.

1.1.1 Claim

If (xi
n) → 0 with xn 6= 0 and for all n, g(i)(xi

n) = 0, then there exists a sequence (xi+1
n ) → 0 such

that for all n, gi+1(xi+1
n ) = 0.

Proof of Claim:
Suppose (xi

n)→ 0 with xn 6= 0 and for all n, g(i)(xi
n) = 0.

Since g(i) is continuous, g(i)(0) = 0.
Construct (xi+1

n ) as follows:
By MVT, for all n ∈ N there exists an xi+1

n ∈ (xi
n, 0) or (0, xi

n) -depending on whether xi
n is

negative or positive- such that

g(i+1)(xi+1
n ) =

g(i)(xi
n)− g(0)

xi
n

=
(0− 0)

xi
n

= 0.
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Since we have that for all n, |xi+1
n | < |xi

n| and limn→∞ xi
n = 0, by the Squeeze Theorem (xi+1

n )→ 0
and so is a satisfactory sequence.
End of Claim.

Since we are given that (x0
n) exists, by our claim and by the Principle of Induction we have that

for all i ∈ N, there exists (xi
n)→ 0 with xi

n 6= 0 such that for all n, g(i)(xi
n) = 0.

Since for all i ∈ N, g(i)(x) is continuous, we have that g(i)(0) = 0.
Therefore we have that for all i ∈ N, g(i)(0) = i!bi and g(i)(0) = 0 so i!bi = 0 and bi = 0.
Therefore g(x) =

∑∞
n=0 bnx

n =
∑∞

n=0 0xn = 0 and g(x) is identically zero on all of (−R,R).

2 Problem Statement 6.6.6
Review the proof that g′(0) = 0 for the function

g(x) =

{
e

−1

x2 forx 6= 0

0 forx = 0

introduced at the end of this section.
(a) Compute g′(x) for x 6= 0. Then use the definition of the derivative to find g′′(0).
(b) Compute g′′(x) and g′′′(x) for x 6= 0. Use these observations and invent whatever notation is
needed to give a general description for the nth derivative g(n)(x) at points different from zero.
(c) Construct a general argument for why g(n)(0) = 0 for all n ∈ N.

2.1 Solution of part a

If x 6= 0, g′(x) = e
−1

x2 (2x−3).
Let (xn)→ 0 such that xn 6= 0. Let cn = 1

(xn)2
. Then

lim
n→∞

g′(xn)− g′(0)

xn

= lim
n→∞

g′(xn)− 0

xn

= lim
n→∞

e
−1

x2n (2x−3n )

xn

=

lim
n→∞

2x−4n

2e
1

x2n

= lim
n→∞

2c2n
ecn

.

Since limn→∞ cn =∞, and exponential growth is asymptotically faster than polynomial growth,
we know that

lim
n→∞

2c2n
ecn

= 0

Since our choice of (xn) was arbitrary, we have that g′′(0) = 0.

2.2 Solution of part b
If x 6= 0

g′′(x) = e
−1

x2 (−6x−4) + e
−1

x2 (2x−3)2 = e
−1

x2 (−6x−4 + 4x−6)

g′′′(x) = e
−1

x2 (24x−5 − 24x−7) + e
−1

x2 (2x−3)(−6x−4 + 4x−6) =
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e
−1

x2 (24x−5 − 36x−7 + 8x−9)

We will prove by induction that generally, g(n)(x) = e
−1

x2 pn(x) where pn(x) is a sum of functions
of the form axb with negative integer exponents, the most negative exponent being −3n.
Proof:
Base Case:
Since g′(x) = e

−1

x2 (2x−3), the base case when i = 1 holds.
Inductive Step:
Given g(n)(x) = e

−1

x2 pn(x) with a suitable pn(x),
We have that

g(n+1)(x) = e
−1

x2 (pn(x))′ + e
−1

x2 (2x−3)pn(x) = e
−1

x2 (pn(x)′ + (2x−3)pn(x)).

Since pn(x) has all negative exponents, the most negative being −3n, we know that
(pn(x)′ + (2x−3)pn(x)) has all negative exponents, the most negative being −3(n + 1).

2.3 Solution of part c
Suppose g(m)(0) = 0. Since g(x) is symmetric about the x-axis, let (xn) → 0 with xn > 0 let
cn = 1

x2 (an almost identical argument can be made for (xn)→ 0 with xn < 0).
Then

lim
n→∞

gm(xn)− gm(0)

xn

= lim
n→∞

e
−1

x2n pm(xn)− 0

xn

= lim
n→∞

pm(xn)x−1n

e
1

x2n

Define p̄m(x) = (x
1
2 )pm(x−

1
2 )

Since pm(x) is a sum of functions of the form axb with negative integer exponents, the most
negative exponent being −3m, p̄m(x) is a sum of functions of the form x

1
2a(x−

1
2 )b with positive

exponents, the most positive exponent being 3
2
m + 1

2
.

Notice that (x−1n )pm(xn) = p̄m(cn). Since xn = c
− 1

2
n , we have that for all n,

pm(xn)x−1n

e
1

x2n

=
pm(c

− 1
2

n )(c
− 1

2
n )−1

ecn
=

(c
1
2
n )pm(c

− 1
2

n )

ecn
=

p̄m(cn)

ecn
.

Since p̄m is only polynomial with largest exponent 3
2
m+ 1

2
, ex is exponential, and limn→∞ cn =∞

we know

lim
n→∞

p̄m(cn)

ecn
= 0.

Therefore

lim
n→∞

gm(xn)− gm(0)

xn

= lim
n→∞

pm(xn)x−1n

e
1

x2n

= lim
n→∞

p̄m(cn)

ecn
= 0.

Since our choice of (xn) was arbitrary, we have that

g(m+1)(0) = 0.
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