1 Problem Statement 7.2.7

Let \(f : [a, b] \rightarrow \mathbb{R} \) be increasing on the set \([a, b]\). Show that \(f \) is integrable on \([a, b]\).

1.1 Solution

This problem is a great introduction to a telescoping series. Although I did not construct a telescoping series in this proof, I could have. The telescoping behavior is what makes the proof possible, it allows us to cancel almost all terms in the sums of \(U(f, P_\epsilon) \) and \(L(f, P_\epsilon) \).

Proof:

Since \(f \) is increasing on \([a, b]\), \(f \) is bounded by \(M = \text{Max}\{|f(a)|, |f(b)|\} \). Therefore, we may use the Integrability Criterion of Thm 7.2.8. Let \(\epsilon > 0 \).

Let \(n = \lceil \frac{(f(b) - f(a))(b-a)}{\epsilon} \rceil \)

Let \(P_\epsilon = \{a + \frac{i}{n}(b - a) : 0 < i < n\} \). Notice that any two neighboring points in the partition are of distance \(\frac{(b-a)}{n} \).

Then because \(f \) is increasing and all intervals in the partition are of equal length, the \(\sup \) of \(f(x) \) over any interval is achieved at the right endpoint.

We have

\[
U(f, P_\epsilon) = \sum_{i=0}^{n-1} f(a + \frac{i}{n}(b-a)) \frac{(b-a)}{n} = \frac{(b-a)}{n} \left\{ f(a + \frac{n}{n}(b-a)) + \sum_{i=0}^{n-2} f(a + \frac{i+1}{n-1}(b-a)) \right\} = \frac{(b-a)}{n} \left\{ f(b) + \sum_{i=0}^{n-2} f(a + \frac{i+1}{n-1}(b-a)) \right\}.
\]

Similarly, we have that the \(\inf \) of \(f(x) \) over any interval is achieved at the left endpoint.

So

\[
L(f, P_\epsilon) = \sum_{i=0}^{n-1} f(a + \frac{i}{n}(b-a)) \frac{(b-a)}{n} = \frac{(b-a)}{n} \left\{ f(a + 0(b-a)) + \sum_{i=1}^{n-1} f(a + \frac{i}{n}(b-a)) \right\} = \frac{(b-a)}{n} \left\{ f(a) + \sum_{i=1}^{n-1} f(a + \frac{i}{n}(b-a)) \right\}.
\]
\[
\frac{(b - a)}{n} \left\{ f(a) + \sum_{i=1}^{n-1} f(a + \frac{i}{n}(b-a)) \right\} = \\
\frac{(b - a)}{n} \left\{ f(a) + \sum_{i=0}^{n-2} f(a + \frac{i+1}{n}(b-a)) \right\}.
\]

So
\[
U(f, P_n) - L(f, P_n) = \\
\frac{(b - a)}{n} \left\{ f(b) - f(a) + \sum_{i=0}^{n-2} f(a + \frac{i+1}{n-1}(b-a)) - \sum_{i=0}^{n-2} f(a + \frac{i+1}{n}(b-a)) \right\} = \\
\frac{(b - a)(f(b) - f(a))}{n} < (b - a)(f(b) - f(a)) \frac{\epsilon}{(b - a)(f(b) - f(a))} \leq \epsilon.
\]

Since our choice of \(\epsilon \) was arbitrary, by Thm 7.2.8 \(f \) is integrable on \([a, b]\).