Homework 2 - Solutions

Complex Variables

Section 11, Problem 5. Set S;:={zeC:|z| <1} and S, :={ze C:|z—2| < 1}. Then, S=S; US; and S; NS, = D.
Moreover, if z; € S| and z; € S5, then z; has real part less than 1, and z, has real part greater than 1, so any finite
path of line segments from z; to z; would have some point with real part exactly 1, which can’t be part of S. So,
any such path of line segments can’t lie entirely in S, meaning that S is not connected.

Section 12, Problem 2. Let z := x + iy € C. Then,
f(z):()c+iy)3 +x+)+1 =(x3 +3ix2y—3xy2—iy3)+(x+iy)+ 1 =(x3 —3xy2+x+ 1)+i(3x2y—y3 +y).
Therefore, u(x, y) =x> —=3x> +x+ 1 and v(x, y) =3 x2y — 33 +y.

Section 12, Problem 4. Let z := re® € C\{0}. Then,

=re? +r 1 e = r(cos 0 + i sin 6) + ¥~ (cos(—6) + i sin(—6))
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=r(cos 8+ isin @) + r~'(cos 6 — i sin 6)
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= (r+ —)cos0+ i(r— —) sin 6.
r r
Therefore, u(r, 6) = (r + ;—) cos @ and v(r, 0) = (r - l—) sin 6.

Section 18, Problem 1(b). Let £ € R* and zy € C. Define f: C —» C by f(z) :=z. We need to prove the existence of
0 € R* such that |z — zg| < ¢ implies |f(z) — z| < €. Notice that for every z € C, we have |z — zy| = |z—z¢| = |z — zo|.
(Taking the complex conjugate never changes the modulus; it only changes the sign of the imaginary part, and the
modulus doesn’t depend on sign of the imaginary part since it gets squared anyway!)

So, we can just choose ¢ := &, and then |z — zg| < ¢ implies that |f(z) — zo| < € since |f(z) — zo] = |z — Zzo| = |z — 20| and

6 = e¢. Hence, lim, _, ,,Z = z.

Section 18, Problem 5. Suppose that lim,_, ¢ f(z) exists. Then, that limit must be the same independently of the
path in which we approach 0. For z := x + iy € C we have

Py (2)2 ~ (x+ iy)2 CE: iy)? ~ x%+2ixy —y?

z xtiy) G- 2-2ixy-y?

We now consider two ways that z = x + iy can approach 0. First, take z on the real axis, i.e. z=x. Then,

x4+ 2ixy — 2 x2

limfiz)= lim —————= lm —

im = 1m 1=1
x50~ 0,0 x2 — 2 jxy —y2  50=(0,0) x2

= lim
(x,0) - (0,0)



Next, take z on the line y = x, i.e. z=x + ix. Then,
X2 +2ixy—y? ) 2 ix?

limf(z)= lim ———= Ilim = lim
z-0 @)=00) x2 — 2 jxy —y2  EI=>00 22 000

Since these two paths give different limits, lim, , ¢ f(z) does not exist.

Extra Problem 1. Let e€R*. We need to prove the existence of § € R* such that |z—3|<d implies
[fz)—(15-0)|<e. Since [f(z) —(15-D)|=|5z—-i—-15+i]=|5z—-15]=|5(z—-3)| =5 |z — 3|, we conclude that for
0 :=¢/5 itis the case that |z — 3| < implies |f(z) — (15 —i)| =5|z— 3| <5 = &. Hence, lim,, 3 f(z) = 15 —i.

Extra Problem 2. Let z := x + iy € C. Since €° := e* €% = ¢“(cos y + i sin y), we conclude that
& =e* (cosy + isiny) = e*(cosy — i siny).
On the other hand,
& =V =" e = "(cos(—y) + i sin(—y)) = e*(cos y — i sin ).
Hence, €7 = €.

Extra Problem 3.

(a) Let S:={ze C:|2z+ 3| >4}. S consists of all points with distance from -1.5 strictly greater than 2. Every
point of S is an interior point of S, so S is open. On the other hand, each point in the circle |2 z + 3| =4 is a bound-
ary point of S not contained in S, so S is not closed. Since any pair of points in S can be connected by a path of line
segments staying within S, S is connected. However, S is not bounded: for any M, S contains a number with
modulus greater than M, for instance M + 1.

(b) Let §:={z € C: Im(z) = 1}. It is clear that every point in S is a boundary point, and these are all the boundary
points of S. Therefore, S is closed and not open. Clearly, S is connected. However, S is not bounded: for any M,

S contains a number with modulus greater than M, for instance M + i.

(c) Let S:={ze C:0<arg(z) <n/4}. It is clear that every point on the lines arg(z) =0 and arg(z) =n/4 is a
boundary point of S. Since the line arg(z) =0 belongs to S and the line arg(z) = /4 does not belong to S, we
conclude that S is neither closed nor open. Clearly, S is connected. However, S is not bounded: for any M, S
contains a number with modulus greater than M, for instance M + 1.

Extra Problem 4. Let z;, z; € U V. If z1, z; € U, then since U is connected, there exists a polygonal line joining
z) to zp lying entirely in U, and so lying entirely in U | V. The case zi, z; € V is similar.

Now, suppose that z; € U and z; € V. By hypothesis we know that there exists some we U [ V. So, again, given
that both U and V' are connected sets, there exist a polygonal line L; joining z; to z lying entirely in U, and a
polygonal line L, joining z to z; lying entirely in V. Thus, the polygonal line L consisting of L; joined to L, lies
entirely in U |J V and connects z; with z,. The final case where z; € V and z, € U is similar.

We’ve treated all possible cases for z;, z, € U J V, and shown that in every case, there exists a finite path of line
segments joining z; and z, lying entirely in U |J 7, and so can conclude that U |J V is connected.
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