
Homework 2 - Solutions

Complex Variables

Section 11, Problem 5.  Set S1 := {z ∈ ℂ : z < 1}  and S2 := {z ∈ ℂ : z - 2 < 1}.  Then, S = S1 ⋃ S2  and S1 ⋂ S2 =∅.

Moreover, if z1 ∈ S1  and z2 ∈ S2, then z1  has real part less than 1, and z2  has real part greater than 1, so any finite

path of line segments from z1  to z2  would have some point with real part exactly 1, which can’t be part of S.  So,

any such path of line segments can’t lie entirely in S, meaning that S is not connected.

Section 12, Problem 2. Let z := x + iy ∈ ℂ. Then,

f (z) = (x + iy)3 + (x + iy) + 1 = x3 + 3 ix2 y - 3 xy2 - iy3 + (x + iy) + 1 = x3 - 3 xy2 + x + 1 + i3 x2 y - y3 + y.

    Therefore, u(x, y) = x3 - 3 xy2 + x + 1 and v(x, y) = 3 x2 y - y3 + y.
◦

Section 12, Problem 4. Let z := reiθ ∈ ℂ∖ {0}. Then,

f (z) = reiθ +
1

reiθ
= reiθ + r-1 e-iθ = r(cos θ + i sin θ) + r-1(cos(-θ) + i sin(-θ))

= r(cos θ + i sin θ) + r-1(cos θ - i sin θ)

= r +
1

r
cos θ + i r -

1

r
sin θ.

    Therefore, u(r, θ) = r +
1
r
 cos θ and v(r, θ) = r -

1
r
 sin θ.

◦

Section 18, Problem 1(b). Let ε ∈ + and z0 ∈ ℂ. Define f : ℂ→ℂ by f (z) := z. We need to prove the existence of

δ ∈ +  such that z - z0 < δ implies  f (z) - z0 < ε. Notice that for every z ∈ ℂ, we have z - z0 = z - z0 = z - z0.

(Taking the complex conjugate never changes the modulus; it only changes the sign of the imaginary part, and the

modulus doesn’t depend on sign of the imaginary part since it gets squared anyway!)

So, we can just choose δ := ε, and then z - z0 < δ implies that  f (z) - z0 < ε since  f (z) - z0 = z - z0 = z - z0 and

δ = ε. Hence, limz→ z0 z = z0.  
◦

Section  18,  Problem 5.  Suppose  that  limz→ 0 f (z)  exists.  Then,  that  limit  must  be  the  same independently  of  the

path in which we approach 0. For z := x + iy ∈ ℂ we have

f (z) := 
z

z


2

=
x + iy

x + iy

2

=
(x + iy)2

(x - iy)2
=

x2 + 2 ixy - y2

x2 - 2 ixy - y2
.

We now consider two ways that z = x + iy can approach 0. First, take z on the real axis, i.e. z = x. Then,

lim
z→ 0

f (z) = lim
(x,0)→ (0,0)

x2 + 2 ixy - y2

x2 - 2 ixy - y2
= lim

(x,0)→ (0,0)

x2

x2
= lim

(x,0)→ (0,0)
1 = 1



Next, take z on the line y = x, i.e. z = x + ix. Then,

lim
z→ 0

f (z) = lim
(x,x)→ (0,0)

x2 + 2 ixy - y2

x2 - 2 ixy - y2
= lim

(x,x)→ (0,0)

2 ix2

-2 ix2
= lim

(x,x)→ (0,0)
-1 = -1.

Since these two paths give different limits, limz→ 0 f (z) does not exist.
◦

Extra  Problem  1.  Let  ε ∈ +.  We  need  to  prove  the  existence  of  δ ∈ +  such  that  z - 3 < δ  implies

 f (z) - (15 - i) < ε.  Since  f (z) - (15 - i) = 5 z - i - 15 + i = 5 z - 15 = 5 (z - 3) = 5 z - 3,  we conclude that  for

δ := ε /5 it is the case that z - 3 < δ implies  f (z) - (15 - i) = 5 z - 3 < 5 δ = ε. Hence, limz→ 3 f (z) = 15 - i. 
◦

Extra Problem 2. Let z := x + iy ∈ ℂ. Since ez := ex eiy = ex(cos y + i sin y), we conclude that

ez = ex (cos y + i sin y) = ex(cos y - i sin y).

    On the other hand,

ez = ex-iy := ex e-iy = ex(cos(-y) + i sin(-y)) = ex(cos y - i sin y).

    Hence, ez = ez.
◦

Extra Problem 3.
    (a)  Let S := {z ∈ ℂ : 2 z + 3 > 4}.  S consists of all  points with distance from -1.5 strictly greater than 2.  Every

point of S is an interior point of S, so S is open. On the other hand, each point in the circle 2 z + 3 = 4 is a bound-

ary point of S not contained in S, so S is not closed. Since any pair of points in S can be connected by a path of line

segments  staying  within  S,  S  is  connected.  However,  S  is  not  bounded:  for  any  M,  S  contains  a  number  with

modulus greater than M, for instance M + 1.
    (b) Let S := {z ∈ ℂ : Im(z) = 1}. It is clear that every point in S is a boundary point, and these are all the boundary

points of S. Therefore, S is closed and not open. Clearly, S is connected. However, S is not bounded: for any M, 

S contains a number with modulus greater than M, for instance M + i.
    (c)  Let  S := {z ∈ ℂ : 0 ≤ arg(z) < π /4}.  It  is  clear  that  every  point  on  the  lines  arg(z) = 0  and  arg(z) = π /4  is  a

boundary  point  of  S.  Since  the  line  arg(z) = 0  belongs  to  S  and  the  line  arg(z) = π /4  does  not  belong  to  S,  we

conclude  that  S  is  neither  closed  nor  open.  Clearly,  S  is  connected.  However,  S  is  not  bounded:  for  any  M,  S

contains a number with modulus greater than M, for instance M + 1.
◦

Extra Problem 4. Let z1, z2 ∈ U ⋃ V . If z1, z2 ∈ U, then since U  is connected, there exists a polygonal line joining

z1 to z2 lying entirely in U, and so lying entirely in U ⋃ V . The case z1, z2 ∈ V  is similar. 

Now, suppose that z1 ∈ U  and z2 ∈ V . By hypothesis we know that there exists some w ∈ U ⋂ V . So, again, given

that  both  U  and  V  are  connected  sets,  there  exist  a  polygonal  line  L1  joining  z1  to  z  lying  entirely  in  U,  and  a

polygonal line L2  joining z  to z2  lying entirely in V .  Thus, the polygonal line L  consisting of L1  joined to L2  lies

entirely in U ⋃ V  and connects z1 with z2. The final case where z1 ∈ V  and z2 ∈ U is similar. 

We’ve treated all possible cases for z1, z2 ∈ U ⋃ V , and shown that in every case, there exists a finite path of line

segments joining z1 and z2 lying entirely in U ⋃ V , and so can conclude that U ⋃ V  is connected.
◦
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