Section 20, Problem 1. By definition, \(f'(z_0) \) is
\[
\lim_{\Delta z \to 0} \frac{\Delta f}{\Delta z} = \frac{f(z_0 + \Delta z) - f(z_0)}{\Delta z} = \lim_{\Delta z \to 0} \frac{(z_0 + \Delta z)^2 - z_0^2}{\Delta z} = \lim_{\Delta z \to 0} \frac{2z_0 \Delta z + \Delta z^2 - z_0^2}{\Delta z} = \lim_{\Delta z \to 0} \frac{2z_0 \Delta z + \Delta z^2}{\Delta z} = \lim_{\Delta z \to 0} 2z_0 + \Delta z = 2z_0.
\]

Section 20, Problem 2(d). We have:
\[
\frac{d}{dz} \left(\frac{1 + z^2}{z^2} \right)^4 = \frac{z^2 \frac{d}{dz} (1 + z^2)^4 - (1 + z^2)^4 \frac{d}{dz} (z^2)}{(z^2)^2} = \frac{4z^2 (1 + z^2)^3 (2z - (1 + z^2)^4 (2z)}{z^4} = 8z^3 (1 + z^2)^3 - 2z(1 + z^2)^4.
\]

Section 20, Problem 4. Since \(f'(z_0) \) and \(g'(z_0) \) exist, and \(g'(z_0) \neq 0 \), we know that
\[
\frac{f'(z_0)}{g'(z_0)} = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{g(z) - g(z_0)}.
\]
But \(f(z_0) = g(z_0) = 0 \) implies
\[
\lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} = \lim_{z \to z_0} \frac{f(z)}{z - z_0} \quad \text{and} \quad \lim_{z \to z_0} \frac{g(z)}{z - z_0}.
\]
Therefore,
\[
\frac{f'(z_0)}{g'(z_0)} = \lim_{z \to z_0} \frac{f(z)/(z - z_0)}{g(z)/(z - z_0)} = \lim_{z \to z_0} \frac{f(z)}{g(z)}.
\]

Section 20, Problem 8(a). First,
\[
\frac{\Delta f}{\Delta z} = \frac{f(z + \Delta z) - f(z)}{\Delta z} = \frac{\text{Re}(z + \Delta z) - \text{Re}(z)}{\Delta z} = \frac{\text{Re}(z) + \text{Re}(\Delta z) - \text{Re}(z)}{\Delta z} = \frac{\text{Re}(\Delta z)}{\Delta z},
\]
where \(\Delta z = \Delta x + i\Delta y \). If \(f'(z) = \lim_{\Delta z \to 0} \Delta f/\Delta z \) exists, it must have the same value independently of the path in which we approach the origin.

If we approach the origin through the real axis, then \(\text{Re}(\Delta z) = \Delta x = \Delta z \), and consequently \(\lim_{\Delta z \to 0} \Delta f/\Delta z = 1 \). On
the other hand, if we approach the origin through the imaginary axis, then \(\text{Re}(\Delta z) = 0 \), and therefore \(\lim_{\Delta z \to 0} \Delta f/\Delta z = 0 \). Hence, \(f'(z) \) does not exist at any point.

\[\Delta f \frac{f(z + \Delta z) - f(z)}{\Delta z} = \frac{f(0 + \Delta z) - 0}{\Delta z} = \frac{f(\Delta z)}{\Delta z} = \frac{(\Delta z)^2}{\Delta z} = (\Delta z)^2. \]

If \(\Delta z \) lies on the real axis, then \(\Delta z = \Delta x \), and so \(\Delta f/\Delta z = (\Delta x)^2/\Delta x)^2 = 1 \); if \(\Delta z \) lies on the imaginary axis, then \(\Delta z = i\Delta y \) and so \(\Delta f/\Delta z = (i\Delta y)^2/(i\Delta y)^2 = 1 \). Therefore, \(\Delta f/\Delta z = 1 \) over the real and imaginary axes. On the other hand, when \(\Delta z \) lies on the line \(\Delta x = \Delta y \), then \(\Delta z = \Delta x + i\Delta x \), and

\[\Delta f = \frac{(\Delta z)^2}{(\Delta z)^2} = \frac{(-2i\Delta y)^2}{2i\Delta x^2} = -1. \]

Hence, \(f'(0) \) does not exist since it is not independent of the path in which we approach the origin.

Section 20, Problem 9. Suppose that \(z = 0 \). For \(\Delta z = \Delta x + i\Delta y \) we have

\[\Delta f = \frac{f(z + \Delta z) - f(z)}{\Delta z} = \frac{f(0 + \Delta z) - 0}{\Delta z} = \frac{(\Delta z)^2}{\Delta z} = \frac{(\Delta x)^2}{\Delta x} + \frac{(\Delta y)^2}{\Delta y}. \]

Let \(z := x + iy \in \mathbb{C} \). Then, \(f(z) := e^x e^{-y} = e^x \cos(-y) + i e^x \sin(-y) = e^x \cos y - i e^y \sin y \). Therefore, \(u(x, y) = e^x \cos y \) and \(v(x, y) = e^y \sin y \). Then, \(u_x = e^x \cos y \) and \(v_y = e^y \cos y \). The only way for \(u_x = v_y \) to hold is then if \(\cos y = 0 \). Similarly, \(u_y = -e^x \sin y \) and \(v_x = -e^y \sin y \), so the only way for \(u_y = -v_x \) to hold is if \(\sin y = 0 \). It is not possible for both \(\cos y = 0 \) and \(\sin y = 0 \) to be true simultaneously, and so the Cauchy-Riemann equations are not satisfied at any point. Therefore, \(f'(z) \) does not exist at any point.

\[\text{Section 24, Problem 1(d).} \]

Let \(z := x + iy \in \mathbb{C} \). Write \(f(z) := u(x, y) + iv(x, y) \), where \(u(x, y) = x^2 \) and \(v(x, y) = y^2 \). Then, \(f \) is defined everywhere and \(u_x = 2x \), \(u_y = 0 \), \(v_x = 2y \), and \(v_y = 2y \).

By the theorem in Section 23, we know that \(f'(z_0) \) exists, and equals \(u_x(x_0, y_0) + iv_y(x_0, y_0) \), if the first-order partial derivatives of \(u \) and \(v \):

(a) exist in some neighborhood of \((x_0, y_0) \);
(b) are continuous at \((x_0, y_0) \);
(c) and satisfy the Cauchy-Riemann equations at \((x_0, y_0) \).

Clearly, (a) and (b) are satisfied. However, (c) is satisfied if and only if \(u_x(x_0, y_0) = 2x_0 = 2y_0 = v_y(x_0, y_0) \), which in turn is equivalent to \(x_0 = y_0 \). Therefore, \(f'(z) \) exists for every \(z_0 \in \mathbb{C} \) where \(z_0 = x_0 + iy_0 \), and in such a case \(f'(z_0) = u_x + iv_y = 2x_0 \).

Section 24, Problem 6. Recall from page 69 that \(u_r = u_x \cos \theta + u_y \sin \theta \), \(u_0 = -u_x \sin \theta + u_y \cos \theta \), \(v_r = v_x \cos \theta + v_y \sin \theta \), and \(v_0 = -v_x \sin \theta + v_y \cos \theta \). So, \(u_r + iv_r = u_x \cos \theta + i v_x \cos \theta \), \(u_0 + iv_0 = -u_x \sin \theta + v_x \cos \theta \), and \(v_0 = -v_x \sin \theta + v_y \cos \theta \).

Since the Cauchy-Riemann equations hold, we can rewrite this as \(u_r + iv_r = u_x \cos \theta - v_x \sin \theta + i v_r \cos \theta + i u_r \sin \theta = (u_x + i v_r) \cos \theta + i v_r \sin \theta = (u_x + i v_r) \sin \theta \).

Therefore, \(u_x + iv_r = (u_x + i v_r) e^{i \theta} \). We already know that \(f' \) can be written as \(u_x + iv_r \), so we’re done.