Section 30:

12. First, let’s write $1/z$ in rectangular form:

$$\frac{1}{z} = \frac{1}{x + iy} = \frac{x - iy}{x^2 + y^2} = \frac{x}{x^2 + y^2} - \frac{y}{x^2 + y^2}i.$$

So,

$$e^{1/z} = e^{\frac{x}{x^2 + y^2} - \frac{y}{x^2 + y^2}i} = e^{x/(x^2+y^2)} \left(\cos \frac{-y}{x^2 + y^2} + i \sin \frac{-y}{x^2 + y^2} \right),$$

and

$$\text{Re}(e^{1/z}) = e^{x/(x^2+y^2)} \cos \frac{-y}{x^2 + y^2}.$$

Rather than taking partial derivatives to check that this function is harmonic, we just recall that whenever f is analytic in a domain D, its real part is harmonic in D. Also, $e^{1/z}$ is the composition of e^z, which is entire, and $1/z$, which is analytic except at 0. Therefore, $e^{1/z}$ is analytic on $\mathbb{C} \setminus \{0\}$, and so $\text{Re}(1/z)$ is harmonic on $\mathbb{C} \setminus \{0\}$.

Section 33:

2(c).

$$\log(-1 + \sqrt{3}i) = \ln | -1 + \sqrt{3}i | + i \arg(-1 + \sqrt{3}i).$$

Also, $| -1 + \sqrt{3}i | = \sqrt{(-1)^2 + \sqrt{3}^2} = 2$ and $\arg(-1 + \sqrt{3}i) = \frac{2\pi}{3} + 2\pi n$. So,

$$\log(-1 + \sqrt{3}i) = \ln 2 + i \left(\frac{2\pi}{3} + 2\pi n\right),$$

where n is any integer.

3.

Log(i^3) = Log($-i$) = ln $| -i | + i \text{Log}(-i) = \ln 1 + i(-\pi/2) = i \frac{-\pi}{2}$.

On the other hand,

$$3\text{Log}(i) = 3(\ln |i| + i\text{Log}(i)) = 3(\ln 1 + i(\pi/2)) = i \frac{3\pi}{2}.$$

Section 34:
1. Suppose that \(z_1 \) and \(z_2 \) are complex numbers. Then

\[\log(z_1z_2) = \ln|z_1z_2| + i\arg(z_1z_2), \]

and

\[\log(z_1) + \log(z_2) = \ln|z_1| + i\arg(z_1) + \ln|z_2| + i\arg(z_2) = \ln|z_1z_2| + i(\arg(z_1) + \arg(z_2)). \]

We know that \(\arg(z_1) + \arg(z_2) \) is ONE OF THE values of \(\arg(z_1z_2) \). But, it may not be the principal value since it may not live in \((-\pi/2, \pi/2)\). On the other hand, each of \(\arg(z_1) \) and \(\arg(z_2) \) is in \((\pi/2, \pi/2)\), so their sum is definitely in \((-\pi, \pi)\). Therefore, if it is not in \((-\pi/2, \pi/2)\), it can be placed inside that interval by just adding or subtracting \(2\pi \), either of which gives another legal value for \(\arg(z_1z_2) \). Therefore, \(\arg(z_1z_2) \) is \(\arg(z_1) + \arg(z_2) + 2\pi N \) for either \(N = 0 \) or \(N = \pm 1 \). This implies from the above formulas that \(\log(z_1z_2) \) is \(\log(z_1) + \log(z_2) + i2\pi N \) for either \(N = 0 \) or \(N = \pm 1 \).

Section 36:

2(c). The principal value of \((1 - i)^{4i}\) is

\[e^{(4i)\log(1-i)} = e^{(4i)(\ln|1-i| + i\arg(1-i))} = e^{(4i)(\ln\sqrt{2} - i(\pi/4))} = e^{\pi + 4i + 2i} = e^{\pi + i\ln 4} \]

\[= e^{\pi} \cos(\ln 4 + i\sin(\ln 4)) = e^{\pi} \cos(\ln 4) + ie^{\pi} \sin(\ln 4). \]

7. The values of \(i^c = i^{a+bi} \) are given by

\[i^{a+bi} = e^{(a+bi)\ln i} = e^{(a+bi)(\ln |i| + \arg i)} = e^{(a+bi)(\pi/2 + 2n\pi)} = e^{a\pi/2 - 2bn\pi + i(b\pi/2 + 2an\pi)}. \]

The modulus of these is given by \(e^{a\pi/2 - 2bn\pi} \). These values will all be different if \(b \neq 0 \), since \(e^c \) is a 1-1 function on the reals, and will obviously all be identical if \(b = 0 \). So, the moduli of all values of \(i^c \) are identical if and only if \(c = a + bi \) is real.

Section 38:

11.

\[\sin(x) = \sin(x - yi) = \frac{e^{i(x-yi)} - e^{-i(x-yi)}}{2i} = \frac{e^{y+ix} - e^{-y-ix}}{2i} = \frac{i}{2} (e^y(\cos x + i\sin x) - e^{-y}(\cos(-x) + i\sin(-x))) \]

\[= \frac{i}{2} (e^y \cos x + ie^y \sin x - e^{-y} \cos(-x) + ie^{-y} \sin(-x)) = \sin x(e^y + e^{-y}) + i \cos x (\frac{e^y - e^{-y}}{2}). \]

Then \(u = \sin x(\frac{e^y + e^{-y}}{2}) \), so \(u_x = \cos x(\frac{e^y + e^{-y}}{2}) \) and \(u_y = \sin x(\frac{e^y - e^{-y}}{2}) \). Similarly, \(v = \cos x(\frac{e^y + e^{-y}}{2}) \), so \(v_x = -\sin x(\frac{e^y + e^{-y}}{2}) \) and \(v_y = \cos x(\frac{e^y - e^{-y}}{2}) \).
The only way for \(f \) to be differentiable at a point \(z = x + iy \) is if the Cauchy-Riemann equations \(u_x = v_y \) and \(u_y = -v_x \) are satisfied there. But here, it’s easy to see that the Cauchy-Riemann equations are only satisfied if \(\cos x \) and \(y \) are both 0, i.e. if \(z = \frac{\pi}{2} + 2n\pi \). But there is no neighborhood contained in this set, so \(\sin(\bar{z}) \) is not analytic anywhere.

The proof for \(\cos(\bar{z}) \) is trivially similar.

14(b). Suppose that \(\overline{\sin(iz)} = \sin(\bar{z}) \). Then,
\[
\frac{e^{i(i(x+iy))} - e^{-i(i(x+iy))}}{2i} = \frac{e^{i(i(x-iy))} - e^{-i(i(x-iy))}}{2i},
\]
and so
\[
-\frac{i}{2}(e^{-x} - e^{x}) = -\frac{i}{2}(e^{-x+iy} - e^{-x-iy}),
\]
and so
\[
-\frac{i}{2}(\cos(-y) + i \sin(-y)) - e^{x}(\cos y + i \sin y)
\]

\[
\frac{-e^{-x} - e^{x}}{2} \sin y + i \frac{-e^{-x} + e^{x}}{2} \cos y = \frac{e^{-x} + e^{x}}{2} \sin y + i \frac{-e^{-x} + e^{x}}{2} \cos y, \quad \text{and so}
\]
\[
\frac{-e^{-x} - e^{x}}{2} \sin y - i \frac{-e^{-x} + e^{x}}{2} \cos y = \frac{e^{-x} + e^{x}}{2} \sin y + i \frac{-e^{-x} + e^{x}}{2} \cos y.
\]

Matching the real parts shows that either \(e^{x} + e^{-x} = 0 \) (impossible) or \(\sin y = 0 \). Therefore, \(y = n\pi \) for some integer \(n \). Matching the imaginary parts shows that either \(\cos y = 0 \) (impossible since \(y = n\pi \)) or \(e^{x} - e^{-x} = 0 \), meaning that \(x = 0 \). Therefore, \(x = 0 \) and \(y = n\pi \), and so \(z = n\pi i \) for some integer \(n \).

Section 42:

2(a).
\[
\int_{0}^{1} (1+it)^2 \, dt = \frac{(1+it)^3}{3i} \bigg|_{0}^{1} = \frac{(1+i)^3}{3i} \cdot \frac{1}{3i} = \frac{1+3i+3i^2+i^3-1}{3i} = \frac{-3+2i}{3i} = \frac{2}{3} + i.
\]

Extra problem 1: If \(\sin z = i \), then \(e^{iz} - e^{-iz} = i \), so \(e^{iz} - e^{-iz} = -2 \). We substitute \(w = e^{iz} \), and get
\[
w - w^{-1} = -2 \implies w^2 - 1 = -2w \implies w^2 + 2w - 1 = 0.
\]

Therefore, by the quadratic formula, \(w = \frac{-2+\sqrt{5}}{2} = -1 \pm \sqrt{2} \). We can then solve for \(z \) in each case:

\[
\begin{align*}
& w = -1 + \sqrt{2} \implies iz = \log(-1 + \sqrt{2}) \implies z = -i \log(-1 + \sqrt{2}) \\
& \quad = -i \left(\ln | -1 + \sqrt{2} | + i \arg(-1 + \sqrt{2}) \right) = -i(\ln(\sqrt{2}-1)+i2n\pi) = 2n\pi - i \ln(\sqrt{2}-1).
\end{align*}
\]
Similarly,

\[w = -1 - \sqrt{2} \implies iz = \log(-1 - \sqrt{2}) \implies z = -i \log(-1 - \sqrt{2}) \]

\[= -i \left(\ln|1 - \sqrt{2}| + i\arg(-1 - \sqrt{2}) \right) = -i(\ln(\sqrt{2}+1)+i(\pi+2n\pi)) = (\pi+2n\pi)-i\ln(\sqrt{2}+1). \]

Extra problem 2: We have a composite function \(f(g(z)) \), where \(f(z) \) is a branch of \(\log z \) and \(g(z) = iz^2 \). In order for the composition \(f(g(z)) \) to be analytic on a domain \(D \), we need two conditions:

1. \(g(z) \) must be analytic on \(D \). This is obvious; \(iz^2 \) is an entire function, so clearly it is analytic on \(D \) specifically.
2. \(f(z) \) must be analytic on \(g(D) \), the image of \(D \) under \(g(z) \). For this, we must figure out what \(g(D) \) is.

Remember that \(D = \{ z : y > 0 \} \), which is clearly the same as \(\{ z : \arg(z) \in (0,\pi) \} \). The effect of \(iz^2 \) on a complex number \(z \) is to double its argument and then rotate counterclockwise by \(\pi/2 \) radians (i.e. to add \(\pi/2 \) to its argument). Therefore, \(g(D) = \{ z \ : \ \arg(z) \in (\pi/2,5\pi/2) \} \). This is almost the entire complex plane, except for the nonnegative imaginary axis. This leaves just enough room to choose \(f = \log_{\pi/2} z \); then the bad ray for \(f \) is the nonnegative imaginary axis, which does not intersect \(g(D) \), and so \(f \) is analytic on \(g(D) \).

Therefore, the branch \(\log_{\pi/2}(iz^2) \) is analytic on \(D \), and so is a solution (and the only one!) to this problem.