16. Suppose that \(f \in L^+(X, \mathcal{M}) \) and that \(\int f \, d\mu < \infty \). Then, for each \(n \), define the set \(E_n = \{ x : f(x) > n \} = f^{-1}((n, \infty)) \) and the function \(f_n = f\chi_{E_n} \). Then, \(E = \bigcup_{n=1}^\infty E_n = \{ x : f(x) < \infty \} \), and we know by a previous exercise that \(\mu(E^c) = 0 \). Therefore, the pointwise limit of \(f_n \) is \(f\chi_E \), which equals \(f \) \(\mu \)-a.e.

Also, since \(E_1 \subseteq E_2 \subseteq \ldots \), the functions \(f_n \) are increasing in \(n \), and so we can apply the Monotone Convergence Theorem to see that

\[
\int f_n \, d\mu \to \int f \, d\mu.
\]

Then by definition of convergence, for every \(\epsilon \), there exists \(n \) so that

\[
\int f_n \, d\mu = \int_{E_n} f \, d\mu > \int f \, d\mu - \epsilon.
\]

Finally, we note that \(n\chi_{E_n} \leq f \), and so by monotonicity,

\[
\int n\chi_{E_n} \, d\mu = n\mu(E_n) \leq \int f \, d\mu,
\]

implying that \(\mu(E_n) < \infty \) and completing the proof.

38(b). “Normal” solution: Suppose \(f_n \to f \) in measure and that \(g_n \to g \) in measure. We’ll also assume that all functions are finite \(\mu \)-a.e.; the proof is just slightly more technical if we allow them to take infinite values. We fix \(\epsilon > 0 \). First, we note that

\[
|f_ng_n - fg| \leq |f_ng_n - fg_n| + |fg_n - fg| = |g_n||f_n - f| + |f||g_n - g|.
\]

Therefore,

\[
\{ x : |f_ng_n - fg| > \epsilon \} \subset \{ x : |g_n||f_n - f| > 0.5\epsilon \} \cup \{ x : |f||g_n - g| > 0.5\epsilon \}.
\]

We can then, for any \(M > 0 \), break these sets down further:

\[
\{ x : |g_n||f_n - f| > 0.5\epsilon \} \subset \{ x : |g_n| > M \} \cup \{ x : |f_n - f| > 0.5M^{-1}\epsilon \}
\]

and

\[
\{ x : |g_n||f_n - f| > 0.5\epsilon \} \subset \{ x : |f| > M \} \cup \{ x : |g_n - g| > 0.5M^{-1}\epsilon \}.
\]

Our plan of attack is now to take \(M \) so large that the sets on the left have very small measure, and then to take \(n \) so large (dependent on \(M \)) so that the sets on the right have very small measure. However, there is a problem: in theory, our \(M \) which gives \(\{ x : |g_n| > M \} \) small measure depends on \(n \), which would cause circular dependencies.
Note that the sets $G_n := \{x : |g| > n\}$ are decreasing, and their intersection is $\{x : |g| = \infty\}$, a null set. Therefore, for any $\delta > 0$, there exists M' so that $\mu(G_{M'-1}) < 0.125\delta$. But, then by convergence in measure of the functions g_n, there exists N' so that for any $n > N'$, $\mu(\{x : |g_n - g| > 1\}) < 0.125\delta$. We now note that

$$\{x : |g_n| > M'\} \subset \{x : |g| > M' - 1\} \cup \{x : |g - g_n| > 1\},$$

and so for ALL $n > N'$, $\mu(\{x : |g_n| > M'\}) < 0.125\delta + 0.125\delta = 0.25\delta$. Similarly, choose M'' so that $\mu(\{x : |f| > M''\}) < 0.25\delta$. Then, take $M = \max(M', M'')$. By the fact that $f_n \rightarrow f$ in measure, there exists N'' so that $n > N'' \Rightarrow \mu(\{x : |f_n - f| > 0.5M^{-1}\epsilon\}) < 0.25\delta$. Similarly, there exists N''' so that $n > N''' \Rightarrow \mu(\{x : |g_n - g| > 0.5M^{-1}\epsilon\}) < 0.25\delta$. Take $N = \max(N', N'', N''')$. Now, finally, we see that for any $n > N$,

$$\mu(\{x : |f_n g_n - fg| > \epsilon\}) \leq \mu(\{x : |g_n| > M\}) + \mu(\{x : |f_n - f| > 0.5M^{-1}\epsilon\}) + \mu(\{x : |f| > M\}) + \mu(\{x : |g_n - g| > 0.5M^{-1}\epsilon\}) = \delta.$$

Since $\delta > 0$ is arbitrary, this shows that $f_n g_n \rightarrow fg$ in measure.

Terry’s really cool solution: Choose any increasing sequence n_k of natural numbers. Since $\{f_n\}$ converges to f in measure, the same is true of $\{f_{n_k}\}$. Therefore, there is a subsequence $\{n_{km}\}$ s.t. $f_{n_{km}} \rightarrow f$ μ-a.e. Then, since $\{g_n\}$ converges to g in measure, so does $\{g_{n_{km}}\}$. Therefore, there is a subsequence $\{n_{km}\}$ so that $g_{n_{km}} \rightarrow g$ μ-a.e. Since $f_{n_{km}} \rightarrow f$ μ-a.e., the same is true for the subsequence $\{f_{n_{km}}\}$.

Now, since $\{f_{n_{km}}\}$ and $\{g_{n_{km}}\}$ converge to f and g μ-a.e. (respectively), clearly $f_{n_{km}}, g_{n_{km}} \rightarrow fg$ μ-a.e. (everywhere except on the union of the two null sets where convergence does not happen for the individual sequences.) Since $\mu(X) < \infty$, this implies that $f_{n_{km}} g_{n_{km}} \rightarrow fg$ in measure as well.

But now, we’ve shown that for any subsequence $\{f_{n_k}, g_{n_k}\}$ of $f_n g_n$, there exists a further subsequence $\{f_{n_{km}}, g_{n_{km}}\}$ which converges to fg in measure. Since convergence in measure is described by the metric ρ (see problem 32), this implies that $f_n g_n \rightarrow fg$ in measure!

If that last sentence wasn’t convincing, here’s a formal justification: assume for a contradiction that $f_n g_n \nrightarrow fg$. Then there exists $\epsilon > 0$ and a subsequence $\{f_{n_k}, g_{n_k}\}$ s.t. $\rho(f_{n_k} g_{n_k}, fg) \geq \epsilon$ for all k. But by the above, there’s a subsequence of n_k along which $\rho(f_{n_k} g_{n_k}, fg)$ approaches 0, contradiction!