MATH 4290 Homework Assignment 1

Due on Thursday, September 20th, at the BEGINNING of class.

• If (X, T) is a non-invertible dynamical system and $x \in X$ is recurrent, prove that Tx is recurrent.

• If (X,T) is a non-invertible dynamical system, $x \in X$ is recurrent, and U is an open set containing x, prove that $R_U(x) := \{n \in \mathbb{N} : T^n x \in U\}$ is infinite.

• If (X,T) is a minimal dynamical system and (Y,S) is conjugate to (X,T), prove that (Y,S) is also minimal.

• Prove that there exists $n \in \mathbb{N}$ so that the decimal expansion of 2^n begins with 777, and give a provable upper bound on n.

• Define (X,T) by $X = \mathbb{T}^2$, which you can think of as $[0,1)^2$ with the top/bottom edges identified and left/right edges identified, and $T : (x,y) \mapsto (x + \alpha, y + \alpha)$ for $\alpha \notin \mathbb{Q}$. Describe, with proof, all minimal subsystems of (X,T).

• If (X,T) is a dynamical system and (M,T) is a nonempty subsystem, prove that (M,T) is the unique minimal subsystem of (X,T) if and only if every subsystem of (X,T) contains (M,T).