
MATH 4290 Homework Assignment 3 Solutions

• Prove that if (X,T ) is topologically transitive and (X,T ) factors onto (Y, S),
then (Y, S) is topologically transitive.

Solution: Suppose that (X,T ) is topologically transitive and that φ is a factor
map from (X,T ) to (Y, S). Consider any nonempty open sets U, V in Y . By
continuity and surjectivity of φ, φ−1(U) and φ−1(V ) are nonempty and open in
X. Therefore, by transitivity of (X,T ), there exists n so that φ−1U∩Tnφ−1V 6=
∅. But then φ(φ−1U ∩ Tnφ−1V ) 6= ∅, and by commutativity of the diagram,

φ(φ−1U ∩ Tnφ−1V ) ⊆ U ∩ φ(Tnφ−1V ) = U ∩ φ(φ−1SnV ) ⊆ U ∩ SnV,

and so U ∩ SnV 6= ∅, completing the proof.

�

• Prove that if (X,T ) is expansive and (Y, S) and (X,T ) are conjugate, then
(Y, S) is expansive.

Solution: Suppose that φ is a conjugacy from (X,T ) to (Y, S). Then φ is a
homeomorphism, and φ(Tx) = S(φ(x)) for all x ∈ X. Since (X,T ) is expansive,
there exists δ > 0 so that for any x 6= x′ in X, ∃n s.t. d(Tnx, Tnx′) > δ. Since
φ−1 is continuous and Y is compact, it is uniformly continuous, and so there
exists η > 0 so that for all y, y′ ∈ Y , d(y, y′) < η =⇒ d(φ−1x, φ−1y) < δ.

Now, suppose that y 6= y′ are points of X. Then, by injectivity of φ, φ−1y 6=
φ−1y′ are points of X. Therefore, there exists n so that d(Tnφ−1y, Tnφ−1y′) >
δ. Since φ is an isomorphism, Tnφ−1y = φ−1(Sny) and Tnφ−1y′ = φ−1(Sny′),
so d(φ−1(Sny), φ−1(Sny′)) > δ. Then by definition of η, d(Sny, Sny′) ≥ η.
Since y 6= y′ were arbitrary, this shows that η is a constant demonstrating that
(Y, S) is expansive.

�

• Prove that if (X,T ) and (Y, S) are topologically mixing, then (X × Y, T × S)
is topologically mixing.

Solution: Suppose that (X,T ) and (Y, S) are topologically mixing, and con-
sider any open sets W,W ′ in X × Y . By definition of the product topology,
there exist open sets U,U ′ in X and V, V ′ in Y so that W ⊃ U × V and
W ′ ⊃ U ′ × V ′. By definition of topological mixing of (X,T ), there exists N
so that for any n > N , U ∩ T−nV 6= ∅. By definition of topological mixing
of (Y, S), there exists N ′ so that for any n > N ′, U ′ ∩ S−nV ′ 6= ∅. Then,
for any n > max(N,N ′), both U ∩ T−nV and U ′ ∩ S−nV ′ are nonempty, and
so (U × U ′) ∩ (T × S)−n(V × V ′) is nonempty as well. But this implies that
W ∩ (T × S)W ′ 6= ∅, and since W and W ′ were arbitrary, this implies that
(X × Y, T × S) is topologically mixing.



�

• At the end of class Thursday, we defined a way of symbolically coding orbits
of a circle rotation Tα (for α /∈ Q). For any α /∈ Q, and any x ∈ T, the “orbit
coding sequence” ψα(x) ∈ {0, 1}N is defined as follows.

For every n ∈ N, define the nth bit (ψα(x))n of ψα(x) to be 1 if Tnαx ∈ [0, α),
and 0 otherwise, i.e. if Tnαx ∈ [α, 1). Then, each x ∈ T yields a sequence ψα(x).
Prove that any such sequence ψα(x) is uniformly recurrent as a point of the
full shift. Hint: what does it mean for ψα(x) to be in a cylinder set [w], i.e.
to start with a certain finite string of digits? Can you characterize the set
{x ∈ T : ψα(x) ∈ [w]}?

Solution: Fix any such α and x. We wish to prove that ψα(x) is uniformly
recurrent. This means that for any open set U containing ψα(x), we must show
that the set

SU (ψα(x)) := {n : σnψα(x) ∈ U}

has bounded gaps. Consider any such U ; by definition of the product topology, U
contains a cylinder set [w] containing ψα(x). Clearly SU (ψα(x)) ⊃ S[w](ψα(x)),
and so it suffices to show that S[w](ψα(x)) has bounded gaps.

Let’s define Iw as the set {y ∈ T : ψα(y) ∈ [w]}, i.e. the set of points y
whose orbit coding sequence begins with w. Denote by k the length of w. Then,
from discussions in class, we know that

Iw =

k−1⋂
i=0

T−iα Iwi
,

where wi is the ith letter of w, and I0 = [0, α) and I1 = [α, 1) are the two coding
intervals. However, this set is an intersection of intervals which are closed on
the left and open on the right, and therefore is such an interval itself. The set
Iw also contains x by definition (recall that ψα(x) ∈ [w].) So, Iw is a nonempty
half-open interval, and therefore contains an open interval, let’s call it J .

By minimality of (T, Tα), the set SJ(x) = {n : Tnαx ∈ J} has bounded
gaps. Moreover, for any n ∈ SJ(x),

Tnαx ∈ J =⇒ Tnαx ∈ Iw =⇒ ψα(Tnαx) ∈ [w] =⇒ σnψα(x) ∈ [w].

Therefore, SJ(x) ⊆ S[w](ψα(x)) ⊆ SU (ψα(x)), and since SJ(x) has bounded
gaps, SU (ψα(x)) does as well. Since U was arbitary, this completes the proof.

�

• Suppose that (X,T ) is any invertible expansive topological dynamical system.
I want you to construct a factor map from some two-sided symbolic system
(Y, σ) to (X,T ), where Y ⊆ {1, 2, . . . , N}Z for some N . Here is an outline:

(a) Prove that for the expansiveness constant δ > 0 of (X,T ), if x, y have the
property that d(Tnx, Tny) < δ for all n ∈ Z, then x = y.
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(b) Use this to cover X with a finite collection of closed balls Ai so that, for
any x, knowledge of a sequence (kn)n∈Z s.t. Tnx ∈ Akn for all n ∈ Z uniquely
determines x.
(c) Use this to construct a symbolic system Y ⊆ {1, 2, . . . , N}Z and a factor
map from (Y, σ) to (X,T ). Remember that you must show that Y is closed in
the product topology and σ-invariant!

Solution: (a) is clear; it’s just the contrapositive of the definition of expan-
siveness. Then, consider the open cover {B0.4δ(z)}z∈X of X by open balls of
diameter δ. By compactness of X, this has a finite subcover {B0.4δ(zn)}1≤n≤N ,

and clearly the collection of closed balls {B0.4δ(zn)}1≤n≤N covers X as well.

If there exist (nk)n∈Z s.t. T kx, T ky ∈ B0.4δ(znk
) for all k ∈ Z, then clearly

d(T kx, T ky) < δ for all n, which implies that x = y by (a). Therefore, this
collection of balls satisfies (b).

Now, for (c), let’s define a set Y ⊆ {1, . . . , N}Z as

Y = {(yk) : ∃x ∈ X for which T kx ∈ B0.4δ(zyk) for all k ∈ Z}.

Define a function φ : Y → X by setting φ(y) to be the unique x (unique-
ness follows from (b)) s.t. T kx ∈ B0.4δ(zyk) for all k ∈ Z. (Equivalently,⋂
k∈Z T

−kB0.4δ(zyk) = {x}.)

We now claim that Y is σ-invariant and closed in the induced product topology,
and that φ is a factor map, i.e. it is continuous and φ(σy) = T (φ(y)) for all
y ∈ Y . For any y = (yk) ∈ Y , by definition φ(y) is the unique point of X so that
T kφ(y) ∈ B0.4δ(zyk) for all k ∈ Z. Then clearly T k(T (φ(y))) ∈ B0.4δ(zyk+1

) for
all k ∈ Z. Then by definition of Y , the sequence σy = (yk+1) is in Y , and by
definition of φ, φ(σy) = T (φ(y)).

To see that Y is closed, consider any sequence y(m) = (y
(m)
k ) of sequences in

Y and a limit point y = (yk) in Y so that y(m) → y in the induced product
topology on Y . Then the sequence φ(y(m)) of points in the compact space X
has a limit point x. For any n ∈ N, for large enough m, y(m) agrees with y on
digits −n through n. This implies that for large enough m and any i ∈ [−n, n],
φ(y(m)) ∈ T−iB0.4δ(zyi). Since T is a homeomorphism, each set T−iB0.4δ(zyi)

is closed. Therefore, since x is a limit point of φ(y(m)), x ∈ T−iB0.4δ(zyi) for

i ∈ [−n, n]. Since n was arbitrary, x ∈ T−iB0.4δ(zyi) for all i ∈ Z, and so
(yk) = y ∈ Y . This verifies that Y is closed. In addition, this proof shows
that x = φ(y). Since φ(y) is unique and our proof relied only on x being
a subsequence of φ(y(m)), this implies that φ(y(m)) → x = φ(y). We have
therefore also verified continuity of φ, completing the proof.
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