MATH 4290 Homework Assignment 5 Solutions

- If \((X, T)\) is a topological dynamical system and \(X\) is a compact metric space with metric \(d\), prove that the quantity \(d_n\) defined by \(d_n(x, y) := \max_{0 \leq i < n} d(T^ix, T^iy)\) is a metric for all \(n \in \mathbb{N}\).

Solution: By definition, \(d_n \geq d\), and so \(d_n(x, y) = 0 \implies d(x, y) = 0 \implies x = y\) since \(d\) is a metric. Similarly, \(d_n(x, x) = \max_{0 \leq i < n} d(T^ix, T^ix) = 0\).

Symmetry is also easy:

\[d_n(x, y) = \max_{0 \leq i < n} d(T^ix, T^iy) = \max_{0 \leq i < n} d(T^iy, T^ix) = d_n(y, x),\]

where the second inequality uses the fact that \(d\) is a metric.

Finally, we must check the triangle inequality:

\[
d_n(x, z) = \max_{0 \leq i < n} d(T^ix, T^iz) \leq \max_{0 \leq i < n} (d(T^ix, T^iy) + d(T^iy, T^iz))
\]

\[
\leq \max_{0 \leq i < n} d(T^ix, T^iy) + \max_{0 \leq i < n} d(T^iy, T^iz) = d_n(x, y) + d_n(y, z).
\]

- Prove the inequalities in Lemma 2.5.1 of the textbook.

Solution: The first inequality is proved in the book. The second inequality is \(\text{span}(n, \epsilon) \leq \text{sep}(n, \epsilon)\). To see this, consider a maximal \(\epsilon\)-separated set \(S\) for \(d_n\). There cannot exist \(x\) with \(d_n\)-distance at least \(\epsilon\) from all points in \(S\), as then \(S \cup \{x\}\) would be a larger \(\epsilon\)-separated set for \(d_n\), a contradiction to maximality of \(S\). Therefore, every point in \(X\) is distance less than \(\epsilon\) from some point of \(S\), i.e. \(S\) is \(\epsilon\)-spanning for \(d_n\). The minimal size of such a set is then less than or equal to \(|S| = \text{sep}(n, \epsilon)\), and so \(\text{span}(n, \epsilon) \leq \text{sep}(n, \epsilon)\).

Finally, we must prove the third inequality: \(\text{sep}(n, \epsilon) \leq \text{cov}(n, \epsilon)\). To see this, consider any \(\epsilon\)-separated set \(S\) for \(d_n\) and any cover \(C\) of \(X\) by sets of \(d_n\)-diameter less than \(\epsilon\). For every \(C \in C\), \(C\) contains at most one point of \(S\); if it contained \(x, y \in S\), then \(d_n(x, y) \leq \text{diam}(C) < \epsilon\), contradicting \(S\) being \(\epsilon\)-separated. Since every \(C \in C\) contains at most one point of \(S\), \(|C| \geq |S|\). Since \(C\) and \(S\) were arbitrary, this shows that the maximum size of such \(S\) is less than or equal to the minimum size of such \(C\), i.e. \(\text{sep}(n, \epsilon) \leq \text{cov}(n, \epsilon)\).

- For the one-sided full shift \((\{0,1\}^\mathbb{N}, \sigma)\), find, with proof, \(\text{sep}(n, 2^{-k})\) and \(\text{span}(n, 2^{-k})\) for every \(n \in \mathbb{N}\) and \(k \in \mathbb{N} \cup \{0\}\). (Reminder: the metric here is \(d((x_n), (y_n)) := 2^{-\max\{n \geq 0: x_i = y_i, \forall i \leq n\}\}.\)

Solution: The following fact is immediate from definition of \(d\) and will be useful throughout this problem: for any \(m\), \(d((x_n), (y_n)) \leq 2^{-m}\) iff \(x_i = y_i\) for
1 ≤ i ≤ m, and \(d((x_n), (y_n)) < 2^{-m} \) iff \(x_i = y_i \) for \(i ≤ m + 1 \) (this is because \(d \) takes only values of the form \(2^{-i} \)).

Now, suppose that \(S \) is \(2^{-k} \)-separated for \(d_n \). Equivalently, for all \(x \neq y \in S \), there exists \(0 \leq i < n \) so that \(d(\sigma^i x, \sigma^i y) ≥ 2^{-k} \). Equivalently, there exists \(0 \leq i < n \) and \(0 ≤ j ≤ k + 1 \) so that \(x_{i+j} \neq y_{i+j} \). Equivalently, there exists \(1 ≤ m ≤ n + k \) so that \(x_m \neq y_m \). Equivalently, the initial words of length \(n + k \) in points in \(S \) are all distinct. It’s clear that the maximal size of such a set is just the number of such words, i.e. \(\text{sep}(n, 2^{-k}) = |A|^{n+k} \).

Suppose that \(T \) is \(2^{-k} \)-spanning for \(d_n \). Equivalently, for every \(x \in X \), there exists \(t \in T \) so that \(d(\sigma^i x, \sigma^i t) < 2^{-k} \) for all \(0 ≤ i < n \). Equivalently, for all \(0 ≤ i < n \) and all \(1 ≤ j ≤ k + 1 \), \(x_{i+j} = t_{i+j} \). Equivalently, \(x_m = t_m \) for all \(1 ≤ m ≤ n + k \). Equivalently, for every \(x \in X \), there exists \(t \in T \) starting with the same \(n + k \)-letter word as \(x \). It’s clear that the minimal size of such a set is just the number of such words, i.e. \(\text{span}(n, 2^{-k}) = |A|^{n+k} \).

\[\bullet \text{ If } (X, T) \text{ factors onto } (Y, S), \text{ prove that } h(X, T) ≥ h(Y, S). \]

Solution: Choose any \(\epsilon > 0 \), and define \(\phi \) the factor from \((X, T) \) to \((Y, S) \) and \(d_X, d_Y \) the metrics on \(X, Y \) respectively. By definition of continuity, there exists \(\delta > 0 \) so that \(d_X(x, x') < \delta \implies d_Y(\phi x, \phi x') < \epsilon \). Then,

\[
(d_X)_n(x, x') < \delta \implies \forall i \in [0, n), d_X(T^i x, T^i x') < \delta \implies \forall i \in [0, n), d_Y(\phi(T^i x), \phi(T^i x')) < \epsilon
\]

\[
\implies \forall i \in [0, n), d_Y(S^i \phi x, S^i \phi x') < \epsilon \implies (d_Y)_n(\phi x, \phi x') < \epsilon.
\]

Therefore, if \(C \) is a cover of \(X \) by sets with \((d_X)_n \)-diameter less than \(\delta \), \(\phi(C) := \{ \phi(C) : C \in C \} \) is a cover of \(Y \) (by surjectivity) by sets with \((d_Y)_n \)-diameter less than \(\epsilon \). By taking \(C \) to have minimum cardinality, we see that

\[
\text{cov}_Y(n, \epsilon) ≤ \text{cov}_X(n, \delta).
\]

Taking logs, dividing by \(n \), and letting \(n \to \infty \) yields \(h_\epsilon(Y, S) ≤ h_\delta(X, T) ≤ h(X, T) \). Letting \(\epsilon \to 0 \) yields \(h(Y, S) ≤ h(X, T) \).

\[\bullet \text{ If } (X, T) \text{ is an isometry (i.e. } d(x, y) = d(Tx, Ty) \text{ for all } x, y \in X \), prove that } h(X, T) = 0. \]

Solution: Since \((X, T) \) is an isometry, \(d(T^i x, T^i y) = d(x, y) \) for all \(x, y, i \), and so \(d_n = d \) for all \(d \). Therefore, for every \(\epsilon > 0 \), \(\text{cov}(n, \epsilon) = \text{cov}(1, \epsilon) \) for all \(n \), meaning that

\[
h_\epsilon(X, T) = \lim_{n \to \infty} \frac{\log \text{cov}(n, \epsilon)}{n} = \lim_{n \to \infty} \frac{\log \text{cov}(1, \epsilon)}{n} = 0.
\]

So, \(h(X, T) = \lim_{\epsilon \to 0^+} h_\epsilon(X, T) = 0. \)