MATH 4290 Homework Assignment 7

Due on Thursday, November 8th, at the BEGINNING of class.

• If $x = \ldots 10101010.234234234\ldots \in \{0, \underline{1}, \underline{2}, \underline{3}, 4\}^{\mathbb{Z}}$, and we define the topological dynamical system (X, σ) with $X = O(x) \subseteq \{0, \underline{1}, \underline{2}, \underline{3}, 4\}^{\mathbb{Z}}$ (here σ is, as always, the left shift), give a complete description of all σ -invariant probability measures on the Borel σ -algebra B(X). Which of these are ergodic?

• Show that for any measure-preserving dynamical system (X, \mathcal{B}, μ, T) and $A \in \mathcal{B}$, if we define $Z = A \setminus (\bigcup_{n=1}^{\infty} T^{-n}A)$, then all of the sets $Z, T^{-1}Z, T^{-2}Z, \ldots$ are pairwise disjoint.

• For an invertible measure-preserving dynamical system $(X, \mathcal{P}(X), \mu, T)$ with X finite, show that μ is ergodic if and only if it is distributed equally over a single periodic orbit, i.e. $\mu = \frac{1}{n}\delta_x + \ldots + \frac{1}{n}\delta_{T^{n-1}x}$ for some x, n with $T^n x = x$.

• For (X, \mathcal{B}, μ, T) with T invertible, show that (X, \mathcal{B}, μ, T) is ergodic if and only if the following statement is true: for every $A \in \mathcal{B}$ with $\mu(A) > 0$, it is the case that $\mu(\bigcup_{n \in \mathbb{Z}} T^n A) = 1$.

• Show the following extension of the Poincaré recurrence theorem: for any measure-preserving dynamical system (X, \mathcal{B}, μ, T) and $A \in \mathcal{B}$, it is the case that for μ -almost every $x \in A$, there exist infinitely many $n \in \mathbb{N}$ for which $T^n x \in A$.