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Abstract

For any conformal iterated function system (CIFS) consisting of finitely or countably many
maps, and any closed shift-invariant set of right-infinite sequences of such maps, one can asso-
ciate a limit set, which we call a shift-generated conformal iterated construction. We define the
extended Hausdorff dimension spectrum of a CIFS to be the set of Hausdorff dimensions of all
such limit sets. We prove that for any CIFS with finitely or countably many maps, the extended
Hausdorff dimension spectrum is maximal, i.e. all nonnegative dimensions less than or equal to
the dimension of the limit set of the CIFS are realized. We also prove a version of this result even
for so-called conformal graph directed Markov systems, obtained via nearest-neighbor restrictions
on the CIFS.

The main step of the proof is to show that for the family (Xβ) of so-called β-shifts, the
Hausdorff dimension of the limit set associated to Xβ varies continuously as a function of β.
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1 Introduction

The study of iterated function systems (IFSes) began in the early 1980s. Many leading researchers
made significant contributions to the theory of IFSes and various extensions, including Barnsley,
Falconer, Graf, Hutchinson, Mauldin, and Urbanski.

The initial focus was on IFSes consisting of finitely many Euclidean similarities. Later on, the
theory was extended to allow infinitely many maps, often called infinite IFSes. Mauldin and Urbanski
were among the first to pioneer two extensions of IFS theory, first the infinite conformal iterated
function systems (CIFSes) (see [15]), and their generalizations, conformal graph directed Markov
systems (CGDMSes) (see [17]). We postpone formal definitions to Section 2, but any CIFS/CGDMS
is defined by a countable family (φa)a∈A of contractions on a compact metric space Y . A CIFS allows
for arbitrary composition of the maps, whereas a CGDMS has nearest-neighbor restrictions on how
the maps can be applied; for instance perhaps φ2 cannot be applied after φ5.

A well-studied question in this area (first asked by Mauldin and Urbanski in [16]) is: given a
CIFS with attractor J , what are the possible Hausdorff dimensions of limit sets of sub-CIFSes?
They defined the Hausdorff dimension spectrum of a CIFS with (infinite) alphabet A as the set
{HD(J(B)) : B ⊂ A}, where J(B) is the limit set of the restricted CIFS with maps (φb)b∈B, and
HD(S) is the Hausdorff dimension of a set S. Clearly this set is a subset of [0, HD(J)], but how
large is it?

In the case of the standard continued fractions CIFS over the unit interval (indexed by A = N),
an extremely similar question was asked independently by Hensley ([9]): must the set {HD(J(B)) :
B ⊂ N, |B| < ∞} be dense in [0, 1]? This was dubbed the Texan conjecture by Jenkinson, and
was resolved in the affirmative in 2006 by Kessebohmer and Zhu in [11]. Research surrounding
the Texan conjecture gave birth to techniques for studying topological and metric features of the
Hausdorff dimension spectrum for a general CIFS.

Mauldin and Urbanski showed that the closed interval [0, θ] of any CIFS is always contained in
the Hausdorff dimension spectrum, where θ is the so-called finiteness parameter of the CIFS.

The Hausdorff dimension spectrum has been studied almost exclusively in the case of an infi-
nite alphabet, because when A is finite, there are only finitely many subsets B ⊂ A, and so the
traditionally defined Hausdorff dimension spectrum is uninteresting.

However, in analogy to the way that a CDGMS is defined by restricting the possible ‘itineraries’
of applications of the maps φa to a topological Markov shift, one can consider much more general
subsystems of a CIFS. Rather than removing maps from the collection entirely, one can restrict the
sequences of legal applications to an arbitrary shift space X on alphabet A; we call this a shift-
generated conformal iterated construction. Even when A is finite, there are uncountably many
such subsystems, and each yields a well-defined limit set J(X), and so the collection of their Hausdorff
dimensions (which we call the extended Hausdorff dimension spectrum) could potentially be
quite large.

In fact this is our main result: for any CIFS or CDGMS over a finite alphabet A, the extended
Hausdorff dimension spectrum is [0, HD(J)]. The main idea of our proof is to use the so-called β-
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shifts, a one-parameter collection (Xβ) of subshifts over any finite alphabet {0, . . . , k}, and to prove
that HD(J(Xβ)) is a continuous function of β. The utility of β-shifts here is not a coincidence;
they are one of the simplest families of subshifts known to achieve any possible (topological) entropy
(see [23], for more details), which is related to the Hausdorff dimension of limit sets via the Bowen
formula (presented here as Proposition 2.8).

2 Preliminaries

2.1 Symbolic dynamics

We begin with some definitions, results and concepts from symbolic dynamics; for further background
and proofs, we refer the reader to [13].

Define A to be any finite or countable nonempty set, called the alphabet. The elements of A
will be called letters.

Definition 2.1. A word over A is any finite sequence of letters from A. More formally, a word is
any ω ∈ An, for some n ≥ 1; this n is referred to as the length of ω.

Definition 2.2. The (one-sided) full A-shift is the set of all infinite sequences of letters from A:

AN = {x = (x1, x2, ..., xi, ...), xi ∈ A}.

Definition 2.3. The (left) shift map σ from AN is defined by (σx)n = xn+1 for all n ≥ 0, i.e.

(x1, x2, . . .) 7→ (x2, x3, . . .).

Definition 2.4. A shift space or subshift over the alphabet A is a set X ⊂ AN which is closed
(in the product discrete topology) and invariant under σ, i.e. x ∈ X =⇒ σx ∈ X.

Definition 2.5. A nearest-neighbor shift of finite type or topological Markov chain is a
subshift over the alphabet A defined by a set S ⊂ A2 of adjacencies in the following way:

XS = {(x1, x2, . . .) ∈ AN : ∀n, (xn, xn+1) ∈ S}.

A topological Markov chain over a finite alphabet is called irreducible if for all i, j ∈ A, there exists
w ∈ L(XS) beginning with i and ending with j. A topological Markov chain over a countable alphabet
is called finitely irreducible if there exists N so that for all i, j ∈ A, there exists w ∈ L(XS) with
length at most N beginning with i and ending with j.

Definition 2.6. For a subshift X over A, the language of X is the set L(X) of all words occurring
within points of x, i.e.

L(X) = {xk . . . x` : x ∈ X, k ≤ ` ∈ N}.
For any n, the n-language of X is Ln(X) := L(X) ∩An, the set of n-letter words in L(X).

For every ω ∈ L(X) ∪X and every n ∈ N less than |ω| (which is taken to be ∞ if ω ∈ X), we
denote by ω|n the word ω1ω2 . . . ωn.

3



2.2 β-shifts

For β > 1, the β-shift Xβ, which is a subshift with alphabet {0, 1, . . . , dβe−1}, was originally defined
by Parry as a symbolic coding of the linear map x 7→ βx mod 1. The definition we give here uses
greedy expansions with base β. For any t ∈ [0, 1), define the sequence a(t) to be the greedy expansion
of t in powers of β−1: a1 is the maximal integer for which a1β

−1 < t, and then for all k > 1, given
a1, . . . , ak, we define ak+1 as the maximal integer for which ak+1β

−(k+1) < t−
∑k

i=1 aiβ
−i.

Then, the subshift Xβ can be defined as the closure of the set of all such sequences a(t). It is

easily checked that a sequence x is in Xβ iff for all 0 ≤ i < j,
∑j−i

s=1
xs+i
βs < 1.

2.3 Shift-generated conformal iterated constructions over a finite or countable
alphabet

A shift-generated iterated construction is defined by a subshift X over an alphabet A with at
least two letters, a non-empty compact metric space Y , a finite collection of non-empty compact
subsets {Ye}e∈A of Y , and a set of generators Φ = {φe : Ye → Y }e∈A, where the φe’s are one-to-one
contractions which satisfy φf (Yf ) ⊆ Ye whenever ef ∈ L2(X).

Let 0 < s < 1 be such that all these generators have a contraction ratio that does not exceed s.
For every ω ∈ L(X), set Yω = Yω|ω| and

φω : Yω → Y, φω := φω1 ◦ φω2 ◦ . . . ◦ φω|ω| .

Given ω ∈ X, the compact sets φω|n(Yω|n), n ≥ 1, are decreasing and their diameters converge
to zero. More precisely,

diam
(
φω|n(Yω|n)

)
≤ sndiam(Y ).

This implies that the set ⋂
n≥1

φω|n(Yω|n)

is a singleton. We define the coding map π : X → Y by

{π(ω)} =
⋂
n≥1

φω|n(Yω|n)

and we define the limit set of the shift-generated construction to be

J(Y ) = π(X).

We call a shift-generated iterated construction conformal if the following conditions are satisfied:

(i) There exists d so that for all e ∈ A, Ye is a connected compact subset of Rd and Ye = IntRd(Ye).
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(ii) (Open Set Condition (OSC)) For every e, f ∈ A, e 6= f ,

φe(Int(Ye)) ∩ φf (Int(Yf )) = ∅.

(iii) For every f ∈ A, there exists a connected open set Wf with Yf ⊆ Wf ⊆ IRd so that the map

φf extends to a C1 conformal diffeomorphism of Wf into
⋂

e∈A:ef∈L2(X)

We.

(iv) There are two constants L ≥ 1 and α > 0 so that∣∣|φ′e(x)| − |φ′e(y)|
∣∣ ≤ L‖(φ′e)−1‖−1 · |x− y|α

for every e ∈ A and for every pair of points x, y ∈ Ye, where |φ′e(x)| represents the norm of the
derivative.

(v) (Cone Property) There exists γ, l > 0, γ < π
2 such that for every x ∈ Y there exists an

open cone Con(x, γ, l) ⊆ Int(Y ) with vertex x, central angle γ, and altitude l.

Remark 2.7. If d ≥ 2 and a construction satisfies conditions (i) and (iii), then it also satisfies
condition (iv) with α = 1 according to Proposition 4.2.1 in [17].

As a consequence of (iv) we get the following:

(iv’) (Bounded Distortion Property (BDP)) There exists K ≥ 1 such that for all ω ∈ L(X) and for
all x, y ∈Wω,

|φ′ω(y)| ≤ K|φ′ω(x)|.

We note that in using our terminology, a conformal iterated function system (CIFS) is a
shift-generated conformal iterated construction induced by a full shift (and Ye = Y , for every e ∈ A),
and a conformal graph directed Markov system (CDGMS) is a shift-generated conformal
iterated construction induced by a topological Markov chain.

Next, we collect necessary versions of Bowen’s formula for shift-generated conformal iterated
constructions over a finite alphabet. We start by defining one of the main tool in studying our
constructions, a topological pressure - like function. For simplicity, we will call it the topological
pressure function. Given t ≥ 0 and n ≥ 1, we denote the nth-level partition function Z(Y, n, t) by

Z(Y, n, t) =
∑

ω∈Ln(X)

‖(φω)′‖t.

For every t ≥ 0, the sequence (Z(Y, n, t))n≥1 is submultiplicative and thus we can define the topo-
logical pressure function P (Y, t) of the construction by:

P (Y, t) = lim
n→∞

1

n
logZ(Y, n, t) = inf

n≥1

1

n
logZ(Y, n, t).
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The topological pressure function P (Y, t) : [0,∞) → IR (as a function of t) is strictly decreas-
ing to negative infinity, convex and hence continuous. Indeed, the strictly decreasing behavior of
the pressure can be more precisely described as follows. Let 0 ≤ t1 < t2. Then Z(Y, n, t2) ≤
sn(t2−t1)Z(Y, n, t1) for all n ≥ 1. Therefore P (Y, t2) ≤ (t2 − t1) log s + P (Y, t1). The convexity of
the pressure follows from the convexity of its partition functions Z(Y, n). The continuity is a direct
consequence of the convexity.

One of the most important results for shift-generated conformal iterated constructions over a fi-
nite alphabet connects the Hausdorff dimension of the limit set with the zero of the topological
pressure function.

Proposition 2.8 (Bowen formula). Let Φ be a shift-generated conformal iterated construction over
a finite alphabet, with subshift X and underlying space Y , and let h be the zero of its topological
pressure function. Then HD(J(Y )) = h and Hh(J(Y )) > 0, where Hh stands for the Hausdorff
measure in the dimension h.

For a detailed proof of this result, please see [7]. For general definitions and results related to
the Hausdorff dimension and Hausdorff measure, see [5].

3 Main Results

The following lemma is the main technical tool in the proofs of our main results.

Lemma 3.1. For any β > 1, k ∈ N, δ < (1 + β2k)1/2k − β, and y ∈ Xβ+δ, there exists a set S ⊂ N
satisfying the following:

(1) S has gaps greater than k, i.e. s 6= t ∈ S =⇒ |s− t| > k
(2) y(s) > 0 for all s ∈ S
(3) The sequence x defined by replacing all letters of y at positions in S by 0s is in Xβ.

Proof. Choose any such k, β, δ, y and note that (β + δ)2k < 1 + β2k. Recall our definition of Xβ:
x ∈ Xβ iff for every 0 ≤ i < j,

j−i∑
s=1

xs+i
βs

< 1. (3.1)

Now, assume that y ∈ Xβ+δ. We may partition y into maximal runs of 0s of length at least k
and remaining intervals, i.e. either y = w1r1w2r2w3r3 . . . or y = w1r1w2r2 . . . wnrn (rn infinite) or
y = w1r1 . . . rn−1wn (wn infinite) where each ri = 0ni for ni ≥ k and each finite wi ends with a non-0
letter and contains no 0k. For all i with wi finite (say y([ai, bi]) = wi), define elements of [ai, bi] as

follows: s
(1)
i = bi (note that y

(
s
(1)
i

)
> 0) and, for all m, if s

(m)
i is defined and at least ai + k, take
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s
(m+1)
i = sup{j : y(j) > 0, ai ≤ j < s

(m)
i − k} (the set inside the supremum is nonempty since wi

does not contain k consecutive 0s). If s
(m)
i < ai + k, then stop and define Si = {s(1)i , . . . , s

(m)
i }. If

y terminates with an infinite wn (say y([an,∞)) = wn, then define elements of [an,∞) as follows:

s
(1)
n = an (note that y

(
s
(1)
n

)
> 0) and, for all m, take s

(m+1)
n = inf{j : y(j) > 0, j > s

(m)
n + k} (the

set inside the infimum is nonempty for the same reason as above). Note for future reference that,

since every wi contains no 0k, s
(m+1)
i ≤ s(m)

i + 2k for all m, i.

Define S to be the set of all s
(j)
i generated above. It is immediate from definition that S satisfies

(1) and (2). We need to verify that x defined by replacing all letters in y at locations in S by 0 is
in Xβ.

It suffices to check (3.1) for 0 ≤ i < j satisfying xi+1 > 0. This is because if
∑j−i

s=1
xs+i
βs = K ≥ 1

and xi+1 = 0, then we can define i′ = inf{i < s ≤ t : xs > 0}, and then
∑j−i′

s=1
xs+i′
βs = βi

′−iK ≥ 1.

Furthermore, it suffices to assume j − i ≥ 2k, since if
∑j−i

s=1
xs+i
βs ≥ 1 and j − i < 2k, then clearly∑2k

s=1
xs+i
βs ≥

∑j−i
s=1

xs+i
βs ≥ 1.

To this end, consider any 0 ≤ i < j where j − i ≥ 2k and xi+1 > 0. In the decomposition of y
above into portions wi with no 0k and ri runs of 0s of length at least k, xi+1 must be part of some
wj . Therefore, some s ∈ S is in the interval (i, i + 2k] (either i + 1 was at the end of wj , in which

case i+ 1 = s
(1)
j by definition, or some s

(m)
j ∈ (i, i+ 2k] by the fact that consecutive elements of S

within wj are separated by at most 2k). By definition of x, x(s) = 0 and y(s) > 0; recall also that
x is coordinatewise less than y on all of N.

This implies that

2k∑
s=1

xs+i
βs
≤

2k∑
s=1

ys+i
βs
− β−2k ≤

(
β + δ

β

)2k 2k∑
s=1

ys+i
(β + δ)s

− β−2k <
(
β + δ

β

)2k

− β−2k.

(The second inequality follows from (3.1) since y ∈ Xβ+δ.) The final expression is equal to (β+δ)2k−1
β2k ,

which is less than 1 by assumption on δ. We’ve verified (3.1) for x, and so x ∈ Xβ, completing the
proof.

We can now prove that the Hausdorff dimension of the limit set of Xβ is continuous as a function
of β.

Theorem 3.2. For any CIFS {φi}i∈A with A = {0, . . . , j}, the Hausdorff dimension of J(Xβ) is
continuous for β ∈ [0, j + 1].

Proof. We begin by proving a general upper bound on
Z(Xβ′ ,n,t)

Z(Xβ ,n,t)
for β′ > β, which will be used

to estimate HD(J(Xβ′)) − HD(J(Xβ)) via the Bowen formula. For ease of notation, we define
δ(β, k) = (1 + β2k)1/2k − β, so that the conclusion of Lemma 3.1 holds when δ < δ(β, k).
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Choose any k > 1 and β′ < β+ δ(β, k). Then for every y ∈ Xβ′ , there exists T with gaps greater
than k so that y contains nonzero letters at locations in T , and changing those letters to 0 yields
x ∈ Xβ.

Using this, we can define, for any n, a map fn : Ln(Xβ′)→ Ln(Xβ); to any v ∈ Ln(Xβ′), choose
some y ∈ Xβ′ beginning with v, then apply the replacement of Lemma 3.1 to obtain x ∈ Xβ, and
define fn(v) to be the prefix of x of length n.

For any x ∈ Ln(Xβ), any y ∈ f−1n (x) is completely determined by a choice of a subset T ′ ⊂
{1, . . . , n} with gaps greater than k and the letters y(t) ∈ {1, . . . , j} for t ∈ T ′. Clearly |T ′| ≤ dn/ke,
and the number of such subsets is bounded by

dn/ke∑
i=0

(
n

i

)
≤ (dn/ke+ 1)

(
n

dn/ke

)
.

Since
(
n
i

)
is increasing for 0 ≤ i ≤ n/2, |f−1n (x)| ≤ jdn/ke(dn/ke + 1)

(
n
dn/ke

)
. For simplicity, we

assume n is a multiple of k, in which case n/k is a positive integer. This yields

|f−1n (x)| ≤ jn/k(2n/k)

(
n

n/k

)
. (3.2)

We also require a bound relating ‖(φw)′‖ and
∥∥(φfn(w))

′∥∥. To see this, note that we can write

w = v1a1v2a2 . . . a|T |v|T |+1, fn(w) = v10v20 . . . 0v|T |+1 (3.3)

where each vi has length at least k and each ai ∈ {1, . . . , j}. For any words u, v over A, the follow-
ing inequality is a simple consequence of the bounded distortion property (iv’) for shift-generated
conformal iterated constructions:

K−1
∥∥(φu)′

∥∥∥∥(φv)
′∥∥ ≤ ∥∥(φuv)

′∥∥ ≤ ∥∥(φu)′
∣∣ ∥∥(φv)

′∥∥ (3.4)

(here K is the constant from (iv’) and is independent of the words u, v). Repeatedly applying this
to (3.3) yields ∥∥(φw)′

∥∥ ≤ K |T | ∥∥(φfn(w))
′∥∥ ≤ Kn/k

∥∥(φfn(w))
′∥∥ . (3.5)

Combining (3.2) and (3.5) yields

Z(Xβ′ , n, t) =
∑

w∈Ln(Xβ′ )

∥∥(φw)′
∥∥t ≤ K2nt/k

∑
w∈Ln(Xβ′ )

∥∥(φfn(w))
′∥∥t

≤ (jKt)n/k(2n/k)

(
n

n/k

) ∑
v∈Ln(Xβ)

∥∥(φv)
′∥∥t = (jKt)n/k(2n/k)

(
n

n/k

)
Z(Xβ, n, t). (3.6)
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We now take logarithms, divide by n, and let n approach infinity (technically along the subset
of multiples of k) to get

P (Xβ′ , t) ≤ P (Xβ, t) +
ln j − t ln(K−1)

k
− k−1 ln(k−1)− (1− k−1) ln(1− k−1)

≤ P (Xβ, t) +
ln j − t ln(K−1) + 2 ln k

k
(3.7)

(recalling that k > 1, and so −(1− k−1) ln(1− k−1) ≤ −k−1 ln(k−1) = ln k
k ).

Finally, we fix any β ∈ [0, j + 1] and define h = HD(J(Xβ)); by Proposition 2.8, P (Xβ, h) = 0.
Take any sequence βn approaching β from above and define hn = HD(J(Xβn)); again by Proposi-

tion 2.8, P (Xβn , hn) = 0. For any ε > 0, choose k so that ln j−HD(M) ln(K−1)+2 ln k
k < ε. Then for

large enough n, βn < β+δ(β, k), and so, using (3.7) (and noting that all hn are bounded from above
by HD(M)),

0 = P (Xβn , hn) ≤ P (Xβ, hn) +
ln j − hn ln(K−1) + 2 ln k

k
< P (Xβ, hn) + ε ≤ P (Xβ, h) + ε = ε.

This means that −ε < P (Xβ, hn) ≤ 0 for sufficiently large n. Since ε was arbitrary and P (Xβ, t) is
a monotone function of t with a unique root, this implies that hn → h and so that HD(J(Xβ)) is
right-continuous.

For left-continuity, assume that βn approaches β from below, choose arbitrary ε > 0, and define
k, h, hn as before. There is a tiny subtlety; we need β < βn + δ(βn, k), which theoretically could be
an issue since δ(βn, k) is not constant. However, we note that δ(x, k) is monotone decreasing in x,
and so it suffices to satisfy β < βn + δ(β, k), which is obviously satisfied for sufficiently large n. We
then again use (3.7):

0 = P (β, h) ≤ P (Xβ, hn) ≤ P (Xβn , hn) +
ln j − hn ln(K−1) + 2 ln k

k
< P (Xβn , hn) + ε = ε.

This means that 0 ≤ P (Xβ, hn) < ε for sufficiently large n. As above, this implies hn → h and so
that HD(J(Xβ)) is left-continuous, completing the proof.

Theorem 3.2, along with the Bowen formula, allows us to prove that many classes of CIFS and
CDGMS have maximal extended Hausdorff dimension spectrum.

Theorem 3.3. For any CIFS {φi}i∈A on Y over a finite alphabet A, the extended Hausdorff di-
mension spectrum {HD(J(X)) : X ⊂ AN} is [0, HD(J(Y ))].

Proof. Without loss of generality, we assume A = {0, . . . , j}. The shift X0 = {0∞} corresponding
to β = 0 is a singleton, so HD(J(X0)) = 0. Similarly, the shift Xn+1 corresponding to β = j + 1
is the full shift {0, . . . , j}N, so J(Xj+1) = J(Y ) and HD(J(Xj+1)) = HD(J(Y )). Theorem 3.3 now
follows from Theorem 3.2 by the Intermediate Value Theorem.
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Theorem 3.4. For any CGDMS {φi}i∈A over a finite alphabet A defined by a topological Markov
chain Z ⊂ AN, the restricted extended Hausdorff dimension spectrum {HD(J(X)) : X ⊂ Z} is
[0, HD(J(Z))].

Proof. We first look at the scenario in which Z is irreducible. In this case for all i, j ∈ A there is a
word wi,j for which iwi,jj ∈ L(Z).

Fix any letter a ∈ A. For every m, we will define a subshift Zm ⊂ Z which behaves like a full
shift with finite alphabet. Specifically, for each v ∈ Lm(Z), there exist uv, u

′
v of length less than N

for which auvvu
′
va ∈ L(Z) (just define uv = wa,v1 and u′v = wv|v|,a). For any v ∈ Lm(Y ), define

tv := auvvu
′
v, and define Zm to be the set of all shifts of infinite concatenations of words in the

set {tv}. Since Z is a topological Markov chain, Zm ⊂ Z. Fix an arbitrary enumeration {vi}Mi=1 of
Lm(Z), and for any β-shift Xβ with 1 < β ≤M + 1, define Zm,β to be the subshift consisting of all
shifts of concatenations of the form tvn1 tvn2 tvn3 . . . where n1n2n3 . . . ∈ Xβ.

It’s not difficult to check that the collection {φtvi}1≤i≤M is a conformal IFS . For any β, define
Jβ = J(Zm,β) the limit set for the shift-generated conformal construction from the original IFS and
J ′β = J(Xβ) the limit set for the shift-generated conformal construction from the IFS {φtvni }. These

sets need not be equal, but they are related; J ′β corresponds to intersections of images of compositions
for only those right-infinite sequences in Zm,β which are infinite concatenations of the form tvn1 tvn2 . . .
(as opposed to a shift of such a sequence). Therefore, clearly J ′β ⊂ Jβ, so HD(J ′β) ≤ HD(Jβ). In
addition, since very point in Zm,β can be written as stvn1 tvn2 . . . for some suffix s of a word tv, Jβ
is a subset of the union of all images of J ′β under φs for such suffixes s. Then, since all such φs
are Lipschitz and Hausdorff dimension is nonincreasing under Lipschitz maps, each such image has
Hausdorff dimension less than or equal to HD(J ′β), meaning that HD(Jβ) ≤ HD(J ′β). So, Jβ and
J ′β have equal Hausdorff dimension. By Theorem 3.2, HD(J ′β) is continuous as a function of β, and
so the same is true of HD(Jβ) = HD(J(Zm,β)).

Clearly Zm,0 consists of a single periodic orbit (corresponding to tv0) (implying HD(J(Zm,0)) =
0) and Zm,M+1 = Zm. So for every m, by the Intermediate Value Theorem, limit sets of shift-
generated conformal constructions for subshifts of Zm achieve all Hausdorff dimensions in [0, HD(J(Zm))].

We now estimate HD(J(Zm,M+1)) = HD(J(Zm)) from below using Proposition 2.8. As a
preliminary, we note that by (3.4), for any v1, . . . , vk ∈ Lm(Z),

∥∥∥(φtv1 ...tvk )′
∥∥∥ ≥ K−3k k∏

i=1

∥∥(φa)
′∥∥∥∥(φuvi )

′∥∥∥∥(φvi)
′∥∥∥∥∥(φu′vi

)′
∥∥∥ ≥ K−3kL2kW k

k∏
i=1

∥∥(φvi)
′∥∥ , (3.8)

where W = ‖(φa)′‖ and L = mini,j∈A
∥∥(φwi,j )

′∥∥ (recalling that all uvi and u′vi are some wi,j).
Define N = max(|wi,j |); then all uvi and u′vi have length between 1 and N , and for any k > 0,

all concatenations tv1 . . . tvk have length between k(m+ 1) and k(m+ 2N + 1). Therefore, by (3.8),
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for any t,

k(m+2N+1)∑
n=k(m+1)

Z(Zm, n, t) =

k(m+2N+1)∑
n=k(m+1)

∑
s∈Ln(Zm)

∥∥(φw)′
∥∥t ≥ ∑

v1,...,vk∈Lm(Z)

∥∥∥(φtv1 ...tvk )′
∥∥∥t

≥ (K−3L2W )kt
∑

v1,...,vk∈Lm(Z)

k∏
i=1

∥∥(φvi)
′∥∥t = (K−3L2W )kt(Z(Z,m, t))k. (3.9)

Let’s specifically define tm = HD(J(Zm)); then by Proposition 2.8, P (Zm, tm) = 0. Therefore, the
quantities Z(Zm, n, tm) are subexponential in n. This means that when we take logarithms, divide
by km, and let m→∞ in (3.9), we get

0 ≥ hm ln(K−3L2W )

m
+ P (Z, hm) =⇒ P (Z, hm) ≤ − ln(K−3L2W )hm

m
≤ C

m
,

where C = − ln(K−3L2W )HD(M). In addition, since hm ≤ h = HD(J(Z)), P (Z, h) = 0 by
Proposition 2.8, and P (Z, t) is decreasing, P (Z, hm) ≥ 0. Therefore, for all m, P (Z, hm) ∈ [0, Cm ],
meaning that P (Z, hm) → 0. Since P (Z, t) is a monotone function of t with a unique root h,
HD(J(Zm)) = hm → h = HD(J(Z)). Since we already showed that {HD(J(X)) : X ⊂ Z}
contains [0, HD(J(Zm))] for all m, it also contains [0, HD(J(Z))). Since clearly HD(J(Z)) is
achieved by X = Z, this completes the proof for the case when Z is irreducible.

Let us now move to the more general case, when Z is not assumed to be irreducible. In this
instance, the finite alphabet A has a unique decomposition A = A1∪A2∪. . . Al, where each restriction
Z ∩ (Ak)

Z is an irreducible topological Markov chain over Ak and each Ak is inclusion maximal with
respect to this restriction. Of these sets, one of them, say Aj , generates a limit set whose Hausdorff
dimension is HD(J(Z)) (see [6] for more details; in particular Theorem 3.5 and Corollary 3.6). We
will denote by Zj the intersection Z ∩ (Aj)

Z.
Given that Zj is irreducible, the restricted extended Hausdorff dimension spectrum {HD(J(X)) :

X ⊂ Zj} is [0, HD(J(Zj))]. Since Zj ⊂ Z and HD(J(Zj)) = HD(J(Z)), this finishes the proof.

Theorem 3.5. For any CGDMS {φi}i∈A over a countably infinite alphabet A defined by a finitely
irreducible topological Markov chain Z ⊂ AN, the restricted extended Hausdorff dimension spectrum
{HD(J(X)) : X ⊂ Z} is [0, HD(J(Z))].

Proof. Without loss of generality, let’s assume A = {0, 1, . . .}. Then for any finite subset B ⊂ A
we know from the above that the extended Hausdorff dimension spectrum contains all reals in
[0, HD(J(BN))]. But it is known (see Theorem 3.15 in [15]) that HD(J(Z)) = supBHD(J(BN ∩
Z)), and so the extended Hausdorff dimension spectrum contains [0, HD(J(Z))). The proof is
complete.
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