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Abstract. For a finite alphabet A and a sequence x ∈ AN, Kamae and Zamboni defined

the maximal pattern complexity function p∗x(n) as a natural generalization of usual word

complexity. They defined a nonperiodic sequence x to be pattern Sturmian if it achieves

the minimal growth rate p∗x(n) = 2n, and asked the question of whether one could classify

recurrent pattern Sturmian sequences.

We answer their question by characterizing recurrent pattern Sturmian sequences as one

of two known types: either a coding of an irrational circle rotation by two intervals, or an

element of what we call a nearly simple Toeplitz subshift.

We also show that nonrecurrent pattern Sturmian sequences are either very close to con-

stant (such examples were given by Kamae and Zamboni) or a (nonrecurrent) coding of an

irrational circle rotation by two intervals.

Our main new technique is to use topological properties of the maximal equicontinuous

factor (MEF) of the subshift generated by x. In this way, we prove a general structural

result about sequences with non-superlinear maximal pattern complexity: they are either

nonrecurrent or minimal with MEF either an odometer or the product of a circle with a

finite cyclic group.

Contents

1. Introduction 2

2. Definitions and preliminaries 4

2.1. Basics on symbolic dynamics and maximal pattern complexity 4

2.2. Three classes of known pattern Sturmian sequences 5

3. Null subshifts, almost 1-1 extensions, and coding sequences 8

4. Non-superlinear maximal pattern complexity: minimal case 11

4.1. Connection between maximal pattern complexity and MEF 11

4.2. Possible MEF for a minimal subshift of non-superlinear maximal pattern

complexity 12

4.3. Characterizing recurrent sequences with non-superlinear maximal pattern

complexity 14

5. Pattern Sturmian: minimal case and proof of Theorem A 17

6. Pattern Sturmian: nonrecurrent case and proof of Theorem B 21

References 27

2020 Mathematics Subject Classification. Primary: 37B10; Secondary: 37B05.

Key words and phrases. subshifts, maximal pattern complexity, topological groups.

The second author gratefully acknowledges the support of a Simons Foundation Collaboration Grant.

1



2 ANH N. LE, RONNIE PAVLOV, AND CASEY SCHLORTT

1. Introduction

One of the most fundamental invariants in the study of dynamical systems is that of entropy.

Informally, topological entropy measures the amount of chaoticity/unpredictability displayed

by orbits of points in the system, by counting growth rates of orbits of length n distinguishable

at different scales; exponential growth corresponds to positive entropy.

However, there are a variety of important systems which have zero entropy, such as interval

exchanges, many billiards, and rank one systems, and so one can use finer information to

distinguish between such systems. This is sometimes a quite technical task due to dependence

on scale, but for symbolically defined systems, it is particularly simple and reduces to a single

function called word complexity. Specifically, given a sequence x ∈ AN0 , for N0 = N ∪ {0},
over an alphabet A, the word complexity function px is defined by px(n) equal to the number

of n-letter strings/words appearing within x. For a subshift X, one instead takes the union

over all x ∈ X. For instance, if X consists of all {0, 1}-sequences without consecutive 1s, then
pX(3) = 5, since the 3-letter strings appearing in X are 000, 001, 010, 100, 101.

The classical Morse-Hedlund theorem (see [25]) states that x is not eventually periodic if and

only if px(n) ≥ n+1 for all n. Since eventually periodic x have bounded word complexity, this

shows that n+ 1 is the slowest nontrivial growth rate for px(n). Interestingly, this minimum

growth rate does occur, and is equivalent to x being a so-called Sturmian sequence defined

via codings of irrational circle rotations (see Section 2 for more details). Several recent works

([6, 7, 10, 11]) have focused on implications of linear growth of px, and [4, 5] have demonstrated

that px(n) ≈ 1.5n is a threshold for several dynamical behaviors.

Continuing this thread of inquiry, in [20], Kamae and Zamboni defined a finer measure

called maximal pattern complexity. For any n, the maximal pattern complexity function p∗x is

defined by p∗x(n) equals to the maximum, over all sets τ ⊆ Z with |τ | = n, of the number of

patterns in Aτ appearing within x. For instance, if x = 010110 . . ., then p∗x(2) = 4, because

all four patterns 0 0, 0 1, 1 0, 1 1 appear in x.

A main result of [20] was an analog of the Morse-Hedlund theorem for maximal pattern

complexity, stating that x is not eventually periodic if and only if p∗x(n) ≥ 2n for all n. For

natural reasons, they defined sequences achieving the minimal growth rate of p∗x(n) = 2n as

pattern Sturmian sequences.

In [19, 20], Kamae and Zamboni provided three classes of examples of pattern Sturmian

sequences, which we call simple circle rotation coding sequences (this includes all Sturmian

sequences), simple Toeplitz sequences, and almost constant sequences (see Section 2 for defi-

nitions). In a later paper, Kamae and co-authors ([14]) examined the Toeplitz case in more

detail, and showed that a slightly larger class, which we call nearly simple Toeplitz sequences,

are also pattern Sturmian. Nearly simple Toeplitz sequences are recurrent (in fact uniformly

recurrent), simple circle rotation coding sequences can be either recurrent or nonrecurrent, and

almost constant sequences are highly nonrecurrent. In the paper [20], Kamae and Zamboni

asked the following question:

Question 1.1 ([20, Problem 1]). What is the general structure of recurrent pattern Sturmian

sequences?
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Our main results are a complete characterization of recurrent pattern Sturmian sequences

(answering Question 1.1) and a near characterization of nonrecurrent pattern Sturmian se-

quences, which together show that all examples are essentially of one of the three known

types.

Theorem A. If x ∈ {0, 1}N0 is recurrent, then x is pattern Sturmian if and only if it is either

a recurrent simple circle rotation coding sequence or a sequence in a nearly simple Toeplitz

subshift.

Theorem B. If x ∈ {0, 1}N0 is nonrecurrent and pattern Sturmian, then it is either a non-

recurrent simple circle rotation coding sequence or almost constant.

The latter is only a near characterization since not all almost constant sequences are pattern

Sturmian, and a main remaining question on this topic is to find a description of those which

are; see Question 6.8.

Another context in which pattern Sturmian subshifts have been important is in the study

of the spectrum of Schrödinger operators. A general heuristic in this area is that two-sided

sequences of sufficiently ‘low complexity’ should have Schrödinger operators with spectrum of

zero Lebesgue measure and all spectral measures purely singular continuous. This structure

has been proved for Sturmian sequences ([3, 8]) and some simple Toeplitz sequences ([23]). In

unpublished work ([9]), Damanik, Liu, and Qu gave partial results in the setting of pattern

Sturmian sequences. They showed the desired structure for nearly simple Toeplitz sequences,

gave an outline for the use of S-adic decomposition to approach more general simple circle

rotation coding sequences, and proved that two-sided non-recurrent almost constant sequences

cannot be pattern Sturmian. They say “given that the class of all pattern Sturmian sequences

is not yet fully understood [...] it is more or less hopeless to attack Conjectures 1.2 and 1.4

head-on.” A ‘head-on approach’ is now possible: our Theorems A and B imply that all

one-sided pattern Sturmian sequences come from either circle coding, nearly simple Toeplitz,

or almost constant sequences. Since [9] showed that the almost constant case is impossible

for two-sided sequences and resolved their conjectures for nearly simple Toeplitz, the only

remaining case is simple circle rotation coding sequences.

Previous results on pattern Sturmian sequences have been proved mostly via purely com-

binatorial methods. The main idea behind the proof of Theorem A is the use of structural

results about the dynamics of the subshift X generated by x. Specifically, sequences with

subexponential maximal pattern complexity are known to yield so-called null subshifts, and

any minimal null subshift is an almost 1-1 extension of a group rotation, known as its maximal

equicontinuous factor (see Theorem 3.3).

Examination of these group rotations is central to our proofs, and in fact applies to the more

general setting of non-superlinear complexity: the sequence x has non-superlinear maximal

pattern complexity if

lim inf
n→∞

p∗x(n)

n
<∞.

See Section 2 for definitions of other terms appearing in the next theorem.
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Theorem C. If x ∈ {0, 1}N0 is recurrent, not periodic, and has non-superlinear maximal

pattern complexity, then x is uniformly recurrent and either

(i) a periodic interleaving of finitely many sequences which are each either a circle ro-

tation interval coding sequence or constant, where all of the circle rotation interval

coding sequences are associated with the same irrational rotation or

(ii) an element of an m-hole Toeplitz subshift for some m > 0.

A surprising open question in the theory of null systems is whether there exists a null

sequence x (meaning that p∗x(n) grows subexponentially) which is recurrent but not uniformly

recurrent. One of the results used in our proof of Theorem A is the following, which shows

that such sequences must have maximal pattern complexity growing on the order of n lnn.

Theorem D. If x is recurrent and not uniformly recurrent, then

lim inf
n→∞

p∗x(n)

n lnn
> 0.

Acknowledgments. We thank David Damanik for informing us about the connection be-

tween pattern Sturmian sequences and spectrum of Schrödinger operators.

2. Definitions and preliminaries

2.1. Basics on symbolic dynamics and maximal pattern complexity. We use N to

denote the set of natural numbers {1, 2, . . .} and N0 = N ∪ {0}. An alphabet is a finite set.

Even though all the definitions and most of our theorems would generalize to arbitrary finite

alphabet A, for ease of notation, we will restrict to A = {0, 1} in this paper. All sequences

considered in this paper are one-sided, i.e. in AN0 , and throughout, the space AN0 is endowed

with the product topology.

Definition 2.1. Let σ : AN0 → AN0 be the (left) shift map defined by (σx)(n) = x(n + 1)

for n ∈ N0. The orbit of a sequence x, denoted Orb(x), is the set {σn(x)}n≥0, and the orbit

closure of x is Orb(x).

Definition 2.2. A subshift (X,σ) is defined by X ⊆ AN0 which is closed and satisfies σ(X) ⊆
X. For any sequence x, its orbit closure Orb(x) is a subshift.

Definition 2.3. A sequence x is periodic if there exists some t ∈ N such that σt(x) = x, or

equivalently such that x(n) = x(n + t) for all n ∈ N0. A sequence x is eventually periodic if

there exists some s ∈ N such that σs(x) is periodic, or equivalently there exist s, t ∈ N such

that x(n) = x(n+ t) for all n > s.

Definition 2.4. A sequence x is recurrent if for all L ∈ N there exists some M ∈ N such that

x(0) . . . x(L−1) = x(M) . . . x(M+L−1). If for all L ∈ N, the set RL = {M : x(0) . . . x(L−1) =
x(M) . . . x(M + L − 1)} is syndetic (there are bounded gaps between subsequent elements),

then x is uniformly recurrent.

Definition 2.5. A subshift X is minimal if it does not properly contain any nonempty

subshift. It is well-known that x is uniformly recurrent if and only if Orb(x) is minimal.
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Definition 2.6. A window τ is any finite subset of N0. The τ -language of a sequence x is

Lx(τ) := {(σnx)(τ)}n∈N0 ⊆ Aτ . The τ -language of a subshift X is LX(τ) :=
⋃

x∈X Lx(τ).

The maximal pattern complexity of a sequence x is defined by p∗x(n) = max|τ |=n |Lx(τ)|. In

the case τ = {0, 1, . . . , n−1}, we represent Lx(τ) and LX(τ) by Lx(n) and LX(n) respectively.

The following analogue of the Morse-Hedlund theorem ([25]) was proven in [20].

Theorem 2.7 ([20]). If x is not eventually periodic, then p∗x(n) ≥ 2n for all n.

In analogue with Sturmian sequences, which have minimum block complexity among non-

periodic sequences (for example, see [13]), Kamae and Zamboni defined pattern Sturmian

sequences as those of minimum maximal pattern complexity. It is immediate that such se-

quences have alphabet with two letters, so we do not lose any generality in assumingA = {0, 1}
for such sequences.

Definition 2.8. A sequence x ∈ {0, 1}N0 is pattern Sturmian if p∗x(n) = 2n for all n, and the

orbit closure of a pattern Sturmian sequence is called a pattern Sturmian subshift.

2.2. Three classes of known pattern Sturmian sequences. Three classes of pattern

Sturmian sequences are known, which we summarize here. (Hereafter, when we refer to the

circle or torus, we mean the quotient space T = R/Z which can be canonically identified with

the unit interval [0, 1).)

2.2.1. Simple circle rotation coding sequences.

Definition 2.9. A sequence x is a circle rotation interval coding sequence if there exist an

irrational α ∈ [0, 1), a partition of [0, 1) into k intervals I0, . . . , Ik−1, and letters a0, . . . , ak−1
not all equal so that x(n) = ai if and only if nα (mod 1) ∈ Ii. In the case k = 2, x is called a

simple circle rotation coding sequence. If we further assume that both intervals are half-open,

and one of the intervals has length exactly α, then x is called a Sturmian sequence.

It was shown in [20] that simple circle rotation coding sequences with intervals of the form

[a, b) are pattern Sturmian, but in fact their proof can be easily adapted to all simple circle

rotation coding sequences. We give a quick proof here for completeness.

Lemma 2.10. Every simple circle rotation coding sequence is pattern Sturmian.

Proof. Suppose that x is a simple circle rotation coding sequence induced by α /∈ Q and

partition ξ = {I0, I1} of [0, 1) into intervals, and without loss of generality that x(n) = i if

and only if nα (mod 1) ∈ Ii. Denote the endpoints of the intervals I0, I1 by y and z. Then

for any window τ with |τ | = n, if a word w ∈ {0, 1}τ is a τ -subword of x, say w = x(i+ τ), it

means that the set
⋂

j∈i+τ (Ix(j) − jα) contains 0, which implies that
⋂

j∈τ (Ix(i+j) − jα) ̸= ∅.

Therefore, |Lx(τ)| is bounded from above by the number of nonempty sets in the partition∨
j∈τ (ξ − jα).

If both I0, I1 are half-open, then all sets in this partition are themselves half-open intervals,

determined by endpoints
⋃

j∈τ{y − jα, z − jα}. There are clearly at most 2n such points,
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and so |Lx(τ)| ≤ 2n. Since τ was arbitrary, p∗x(n) ≤ 2n, and so by Theorem 2.7, x is pattern

Sturmian.

If one of I0, I1 is closed, but y − z ̸= nα for all n ∈ Z, then all elements of
∨

j∈τ (ξ − jα)

are still intervals, and the same proof applies. The only remaining case is where y − z = nα

for some n; we can assume n > 0 by switching y, z if necessary. Now, if τ contains elements

with difference n, then we may get nonempty sets in
∨

j∈τ (ξ− jα) which are not intervals but

singletons; for instance, if I0 = [y, z], then we may have I0 ∩ (I0 − nα) = {z}. However, we

can still show that
∣∣∣∨j∈τ (ξ − jα)

∣∣∣ ≤ 2n.

Note that any singleton in
∨

j∈τ (ξ − jα) corresponds to a pair j, j′ ∈ τ for which y − jα =

z − j′α ⇔ j = j′ + n, and the number of such pairs is τ ∩ (τ − n). However, the number of

intervals in this partition is bounded from above by
⋃

j∈τ{y − jα, z − jα}, whose cardinality

is precisely 2n − |τ ∩ (τ − n)|. Therefore, the total number of sets in
∨

j∈τ (ξ − jα) is still

bounded from above by 2n, completing the proof.

□

It is important to note that when all intervals are half-open, it is easily shown that circle

rotation interval coding sequences are recurrent. However, when at least one interval is closed,

they can be nonrecurrent. For instance, if α < 1/2, I0 = [0, α], I1 = (α, 1), a0 = 0, and

a1 = 1, the induced simple circle rotation coding sequence begins with 00 (since 0, α ∈ I0),

but contains no other consecutive 0s (since α is irrational and x, x+ α ∈ I0 happens only for

x = 0). In fact, this phenomenon generalizes to the following characterization of nonrecurrent

simple circle rotation coding sequences.

Proposition 2.11. If x is a simple circle rotation coding sequence with rotation number

α, then x is nonrecurrent if and only if one of the intervals has the form (k1α, k2α) or

[k1α, k2α] mod 1 for some k1 ̸= k2 ∈ N0.

Proof. For the “only if” direction, see Proposition 6.4. To prove the “if” direction, let [0, 1) =

I0 ∪ I1 be the partition of the circle associated to x. If an interval has the form [k1α, k2α],

then the other interval has the form (k2α, k1α) and vice versa. Therefore, without loss of

generality, we can assume I0 = [k1α, k2α] and k1 < k2. Then k1α, k2α ∈ I0, and if the length

|I0| of I0 is greater than 1/2, we also get k1 + i(k2 − k1)α ∈ I0 for 1 < i ≤ 1/(1− |I0|).
Then, for the window τ = {0, k2 − k1, 2(k2 − k1), . . . , ⌊ 1

1−|I0|⌋(k2 − k1)},

x(k1 + τ) = 0 . . . 0.

However, for all n ̸= k1,

x(n+ τ) ̸= 0 . . . 0,

and so x is not recurrent. □

Regardless of the forms of intervals, all simple circle rotation coding sequences are pattern

Sturmian, as shown in Lemma 2.10. This is in contrast to usual word complexity where being

Sturmian requires both intervals to be half-open and have length α and 1− α respectively.
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2.2.2. Nearly simple Toeplitz sequences. For the second class of pattern Sturmian sequences,

we need some definitions about Toeplitz sequences.

Definition 2.12. A sequence x is a Toeplitz sequence with period structure (nk) ⊆ N if

(i) nk properly divides nk+1 for all k,

(ii) and there exists a partition of the form N0 =
⊔

k,i(ak,i + nkN0) where x is constant

on each infinite arithmetic progression ak,i + nkN0.

The number of holes at step k in x is nk

(
1−

∑k
j=1

|{aj,i}i|
nj

)
, i.e., the number of nonconstant

arithmetic progressions in x modulo nk. If x has m holes at every step, it is called a m-hole

Toeplitz sequence. If x is a 1-hole Toeplitz sequence and ak,i is independent of i for each k (i.e.,

if for each k, all constant progressions in x modulo nk take the same value), then x is called

a simple Toeplitz sequence. A (m-hole/simple) Toeplitz subshift with period structure (nk) is

the closure of the orbit of a (m-hole/simple) Toeplitz sequence with that period structure.

It is well-known that all Toeplitz sequences are uniformly recurrent, and so all Toeplitz

subshifts are minimal.

We note a subtlety in these definitions; not all elements of a Toeplitz subshift are themselves

Toeplitz sequences. For instance, if x with period structure (2k) is defined for m ≥ 0 by

x(m) = i (mod 2) if and only if m + 1 = 2iq for some odd integer q, then x is a Toeplitz

sequence associated to the partition N0 =
⊔
(2k−1−1+2kN0). However, the Toeplitz subshift

X = Orb(x) contains the sequence x′ defined by x′(0) = 1 and x′(m) = i (mod 2) if and only

if m = 2iq for m > 0. Then x′ is just barely not a Toeplitz sequence itself, since its associated

constant arithmetic progressions 2k−1 + 2kN do not partition N0. (Put another way, x′(0) is

not part of any constant arithmetic progression). In fact, a sequence in a Toeplitz subshift is

not itself Toeplitz if and only if its associated arithmetic progressions do not completely cover

N0.

It was proved in [19] that simple Toeplitz sequences are pattern Sturmian. However, this

proof was slightly incorrect. In [14], this proof is corrected and generalized to a slightly larger

class. In fact, they give a complete characterization of pattern Sturmian 1-hole Toeplitz

sequences. (We do not give a definition of the technical condition D((w?)∞, L) ≤ 0 here; see

[14, Page 1076] for definitions.)

Theorem 2.13 ([14, Theorem 2]). If x is a 1-hole Toeplitz sequence, it is pattern Sturmian if

and only if it is either simple Toeplitz or it is a shift of the image of a simple Toeplitz sequence

under a single constant-length morphism of the form 0 7→ w0, 1 7→ w1 satisfying the condition

D((w?)∞, L) ≤ 0 for L ⊆ {0, . . . , |w|}.

We call a sequence x a nearly simple Toeplitz sequence if it satisfies the conclusion of

Theorem 2.13, and the closure of the orbit of any such x is a nearly simple Toeplitz subshift.

Nearly simple Toeplitz sequences are pattern Sturmian by Theorem 2.13, so nearly simple

Toeplitz subshifts (and all sequences in them) are as well. Finally, Theorem 2.13 also implies

that a pattern Sturmian 1-hole Toeplitz subshift X is nearly simple, by just considering any

1-hole pattern Sturmian sequence in X.
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We note the following for future reference: if x is a nearly simple Toeplitz sequence, then

it is a shift of θy for some simple Toeplitz y and substitution θ : 0 7→ w0, 1 7→ w1 of some

length C. Therefore, if we define its subsequences x(i)(n) := x(i+Cn) for 0 ≤ i < C, then all

but one of the sequences x(i) is constant, and the nonconstant one is just y itself, therefore

simple Toeplitz.

2.2.3. Almost constant sequences. The final class of known pattern Sturmian sequences are

nonrecurrent, and given in [20]. Specifically, they show that if x is the characteristic function

of a sequence (sk) with sk+1 > 2sk for all k, then x is pattern Sturmian. The key fact about

this sequence is that it is only nonzero on a very sparse set, which motivates the following

definition.

For a set S ⊆ N0, the upper Banach density of S is

d∗(S) = lim
N→∞

max
M∈N0

|S ∩ [M,M +N)|
N

.

Definition 2.14. A sequence x is almost constant if there exists an infinite set S such that

d∗(S) = 0 and x is the characteristic function of S or N0 \ S.

While there are almost constant sequences which are pattern Sturmian, not all almost

constant sequences are. For instance, if S = N0 \ {0, 1, 2, 3, 5, 9, 10}, then the characteristic

function of S is an almost constant sequence which begins with 00001011100. This sequence

contains all possible τ -words for τ = {0, 1, 2}, and so is not pattern Sturmian.

Our Theorems A and B show that all pattern Sturmian sequences fall into one of these

known categories: simple circle rotation coding sequences, sequences in nearly simple Toeplitz

subshifts, or almost constant sequences.

3. Null subshifts, almost 1-1 extensions, and coding sequences

Null topological dynamical systems were first considered in [16] as those with zero topologi-

cal sequence entropy for all sequences. In the setting of {0, 1}-subshifts, this has a particularly

simple interpretation.

Theorem 3.1 ([18, Corollary 2.2], [15, Theorem 5.1]). A {0, 1}-subshift is null if and only if
ln p∗X(n)

n → 0.

In particular, pattern Sturmian subshifts are null. In the measurable category, having zero

sequence entropy for all sequences was shown by Kushnirenko ([22]) to imply isomorphism to

a group rotation. Infinite null subshifts cannot be topologically conjugate to rotations (see

Lemma 4.5), but they are extremely close. To say more about this, we first need a definition.

Definition 3.2. Let (X,T ) and (Y, S) be minimal topological dynamical systems. We say

(X,T ) is an almost 1-1 extension of (Y, S) if there exists a surjective continuous map ϕ :

X → Y such that ϕ ◦ T = S ◦ ϕ and ϕ is injective somewhere, i.e. there exists y ∈ Y with

|ϕ−1({y})| = 1.
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In fact, for almost 1-1 extensions (between minimal systems), the map ϕ is generically

injective, i.e. the set of y ∈ Y with singleton preimages is a dense Gδ set.

Every minimal topological dynamical system (X,T ) has a maximal group rotation (G,+g0)

occurring as a factor, which is called the maximal equicontinuous factor or MEF. Since X is

compact and (X,T ) is minimal, G is compact and the MEF rotation (G,+g0) is monothetic,

meaning that {ng0}n∈N0 is dense in G.

We do not need a general treatment of the theory of maximal equicontinuous factors here

(see, for example, [1, 2]), but note that the MEF is uniquely determined up to group isomor-

phism.

Theorem 3.3 ([17, Theorem 4.3], [21, Corollary 7.16]). If X is minimal and null, then X is

an almost 1-1 extension of its MEF.

In fact, in the case where X is a {0, 1}-subshift, such an almost 1-1 extension can be

represented explicitly in terms of symbolic coding of the associated rotation, similarly to

Definition 2.9.

The following is folklore, and seems to be implictly present in work of Downarowicz and

others on semi-cocycles (for example see [12]), but we include it for ease of reference in future

results.

Theorem 3.4 (see [12, Theorem 6.4]). Suppose that ϕ : X → Y is an almost 1-1 extension,

(X,σ) is a minimal {0, 1}-subshift, and (Y, T ) is a topological dynamical system. Then there

exists a partition Y = U0 ∪ U1 ∪ B where U0, U1 are open and nonempty, B is the common

boundary of U0, U1, and there exist x0 ∈ X and y0 ∈ Y so that x0 comes from coding the

orbit of y0 as follows: for all n ≥ 0, Tny0 /∈ B, and for i ∈ {0, 1}, x0(n) = i if and only if

Tny0 ∈ Ui.

Proof. This is relatively straightforward: simply define Ki = ϕ([i]) for i ∈ {0, 1}. Then each

Ki is compact and nonempty, their union is Y , and their intersection is first category by

definition of almost 1-1. Since it is also closed, it is nowhere dense; represent this intersection

by I. Then define V0 = Kc
1 and V1 = Kc

0, and {V0, V1, I} forms a partition of Y .

Now, define Ii = I ∩ ∂Vi for i ∈ {0, 1}. Since I was nowhere dense, I = I0 ∪ I1. Define

B = I0∩ I1 and Ui = Vi∪ (Ii \B). Then each Ui is open; if y ∈ Vi, then y has a neighborhood

in Vi ⊆ Ui since y is open, and if y ∈ Ii \ B, then by definition there is a neighborhood W

of y containing no point from V1−i, meaning that every point of W is neither in V1−i or I1−i,

and so is in Ui. B is still closed and nowhere dense, and every neighborhood of a point in B

contains points of both Ui ⊆ Vi by definition, so B is the common boundary of U0, U1.

Since I was nowhere dense and T is continuous, the union
⋃

n T
nI is first category, and so

there exists y0 in its complement. Then for each n ≥ 0, Tny0 ∈ V0∪V1, and if we denote by x0
any point in ϕ−1(y0), then by definition x0(n) = i if and only if Tny0 ∈ Vi ⊆ Ui, completing

the proof. □

In the case where (Y, T ) is a group rotation, without loss of generality, we can assume that

y0 is the identity (by translating the partition by y−10 ), and in this case we make the following

definition.
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Definition 3.5. For a minimal null {0, 1}-subshift X with the maximal equicontinuous factor

Y , we refer to any partition satisfying Theorem 3.4 for y0 equal to the identity as an MEF

partition associated to X.

We note for future reference that when the MEF is infinite, in fact one can interpret all

points of X as coding sequences (as opposed to just the distinguished x0 from Theorem 3.4).

Theorem 3.6. If X is an infinite minimal subshift with MEF (G,+g0) and MEF partition

{U0, U1, B}, then there exists a partition {B0, B1} of B and y ∈ Y so that x comes from

coding the orbit of y in the following sense:

for i ∈ {0, 1}, x(n) = i⇐⇒ y + ng0 ∈ Ui ∪Bi.

Proof. By definition of an MEF partition, there exists x0 ∈ X which comes from coding the

orbit of the identity in the following sense:

x0(n) = i⇐⇒ ng0 ∈ Ui.

We recall that in particular, no ng0 lies in B. Now, consider any x ∈ X. Since X is minimal,

there exists a sequence (nk) so that σ
nkx0 → x. By compactness and passing to a subsequence,

we can assume that nkg0 converges to some limit y ∈ Y .

Now, by definition of the shift,

(σnkx0)(n) = i⇐⇒ (n+ nk)g0 ∈ Ui.

Since σnkx0 → x, this means that x(n) = i if and only if (n+ nk)g0 ∈ Ui for sufficiently large

k. Note that (n+ nk)g0 → nα+ y. If ng0 + y is in either open set Ui, then clearly x(n) = i.

The only remaining case is when ng0 + y ∈ B. Since X is infinite, Y is infinite. We know

that g0 is a monothetic rotation, and so for each element b ∈ B, there exists at most one n

for which ng0 + y = b; if such n exists, then assign b to Bx(n). Then by definition, for every

n, x(n) = i if and only if ng0 ∈ (Ui ∪Bi)− y. For any b which are not equal to any ng0 + y,

assign to either B0 or B1 arbitrarily; this completes the proof.

□

It is fairly straightforward how recurrent simple circle rotation coding sequences can be

viewed in this context; the MEF partition has open sets given by interiors of the coding

intervals and the boundary is the set of endpoints. It will be useful for future reference to

explicitly define the MEF partition for Toeplitz sequences.

Lemma 3.7. If x is a Toeplitz sequence with period structure (nk), then the subshift X =

Orb(x) is minimal and an almost 1-1 extension of its maximal equicontinuous factor, which

is addition by 1 on the odometer

O = lim
←−

Z⧸nkZ.

In addition, if x is defined by partition N0 =
⊔

k,i(ak,i + nkN0) where x is constant on every

ak,i + nkN0, then X can be associated with the MEF partition where the clopen subset of

elements y ∈ O with y(k) = ak,i is a subset of Uj if and only if x = j on ak,i + nkN0. Then

B is the set of all y ∈ O where for all k, x is not constant on the arithmetic progression

y(k) + nkN0.
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Proof. This essentially follows from the definitions. First, define U0, U1, B as in the lemma;

they are well-defined since the progressions ak,i + nkN0 are disjoint, meaning that no y ∈ O
can have y(k) = ak,i and y(k′) = ak′,i′ for distinct pairs (k, i) ̸= (k′, i′).

Every n ∈ N0 is part of exactly one of the arithmetic progressions ak,i + nkN0; say that x

has constant value j on this progression. Then x(n) = j, and n ·1 = n ∈ O has kth coordinate

n (mod nk) = ak,i, so by definition, n ∈ Uj as an element of O. Therefore, x0 = x arises from

coding the orbit of y0 = 0 as in Theorem 3.4.

It remains only to check that the claimed B is both the common boundary of U0 and U1

and the complement of their union; this is straightforward and left to the reader.

□

We present the following example to illustrate Lemma 3.7.

Example 3.8. Suppose that x is a sequence with alphabet {0, 1} defined as follows: for any

n ∈ N0, if we write n+ 1 = 3rs for s not a multiple of 3, then x(n) = (s (mod 3))− 1. Then

x = .010011010010011010010011011 . . .

Then we can see that x is a nonsimple 1-hole Toeplitz with nk = 3k, ak,1 = 3k−1 − 1,

ak,2 = 2 ·3k−1−1, and associated partition N0 =
⋃

k∈N(3
k−1−1+3kN0)∪ (2 ·3k−1−1+3kN0).

The sequence x is constant of all 0s on each 3k−1−1+3kN0 and all 1s on each 2·3k−1−1+3kN0.

Therefore, by Lemma 3.7, the orbit closure X of x has MEF the odometer O = lim
←−

Z⧸3kZ.
The associated MEF partition is {U0, U1, B} where U0 consists of all y ∈ O beginning with a

string of −1 followed by y(k) = 3k−1 − 1, U1 consists of all y ∈ O beginning with a string of

−1 followed by y(k) = 2 · 3k−1 − 1, and B = {(−1,−1,−1, . . .)}.

We finish with a simple corollary of Lemma 3.7.

Corollary 3.9. If X is a Toeplitz subshift, then it is an m-hole Toeplitz subshift if and only

if there exists an MEF partition for X which has |B| = m.

Proof. If X = Orb(x) for some m-hole Toeplitz sequence x, then for each k there are m

residue classes mod nk of x which are not equal to some ak,i, and taking limits yields exactly

k elements of B as described in Lemma 3.7.

Conversely, suppose that a Toeplitz subshift X has MEF an odometer O = lim←−
Z⧸nkZ and

an MEF partition with |B| = m. For each k, define the set Bk of 0 ≤ i < nk so that U0,

U1 each contain elements with kth coordinate i. Then, by definition, B is the set of limits

of elements of Bk as k → ∞, and so for sufficiently large k, |Bk| = m. Then, coding the

orbit of 0 by the partition {U0, U1, B} yields x0 ∈ X which is m-hole Toeplitz by definition;

nonconstant residue classes of x modulo nk correspond to elements of Bk, so for large enough

k there are exactly m of them. Since X is minimal, X = Orb(x0), completing the proof. □

4. Non-superlinear maximal pattern complexity: minimal case

4.1. Connection between maximal pattern complexity and MEF. Our main obser-

vation is the size of the boundary for an associated MEF partition directly influences the

maximal pattern complexity.
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Theorem 4.1. If X is a minimal null subshift with MEF partition {U0, U1, B} with |B| ≥ k,

then

inf
n∈N

(p∗X(n)− kn) > −∞.

Proof. Suppose that ϕ : X → G is the almost 1-1 extension of the MEF (G,+g0) guaranteed

by Theorem 3.3 and U0, U1, B, x0 are as in Theorem 3.4; recall that y0 is the identity by

definition of MEF partition. For some k ∈ N, define distinct b1, . . . , bk ∈ B and ϵ > 0 so that

the ϵ-balls around bi are pairwise disjoint.

For any finite τ ⊆ N0, define the partition ξτ of G into the (possibly empty) open subsets

Uw,τ =
⋂

s∈τ (Uw(s)− sg0) for each w ∈ {0, 1}τ and the complement Cτ =
⋃

s∈τ (B− sg0). The

significance is that ig0 ∈ Uw,τ =⇒ x0(i+ τ) = w. Since g0 is a monothetic rotation and Uw,τ

is open, this means that Uw,τ ̸= ∅ =⇒ w ∈ LX(τ).

Since ϕ is a function, the partitions ξτ separate points in y, and so there exists τ so that

every nonempty Uw,τ for τ has diameter less than ϵ. We now define sets τn, with |τn| = |τ |+n,

τ0 = τ , and τ0 ⊆ τ1 ⊆ τ2 · · · , so that |LX(τn+1)| ≥ |LX(τn)|+k for all n ≥ 0, which completes

the proof.

Suppose that τn ⊇ τ0 has been defined, so that in particular the nonempty sets Uw,τn have

diameter less than ϵ. Each set Cτn − bi is nowhere dense, so the union
⋃k

i=1(Cτn − bi) is

nowhere dense. Since the set {−mg0 : m ∈ N} is dense, there must exist infinitely many m

so that −mg0 is not in
⋃k

i=1(Cτn − bi), which implies that Cτn +mg0 contains no bi. Choose

such an m greater than max τn, and define τn+1 = τn ∪ {m}.
Since Cτn + mg0 contains no bi, each bi − mg0 is inside some Uwi,τn , and since each has

diameter less than ϵ, the wi are distinct. Then, by definition of boundary points, each Uwi,τn

contains points of both U0 −mg0 and U1 −mg0, meaning that the intersections Uwia,τn+1 =(⋂
s∈τn(Uwi(s) − sg0)

)
∩ (Ua −mg0) are both nonempty, and so the concatenations wi0, wi1

are both in LX(τn+1). Since every word in LX(τn) has at least one extension to τn+1 and k

words have two extensions, |LX(τn+1)| ≥ |LX(τn)|+ k, completing the proof.

□

We now have the following immediate corollary.

Corollary 4.2. If X is a minimal subshift with non-superlinear maximal pattern complexity,

then the boundary set B is finite for any associated MEF partition.

4.2. Possible MEF for a minimal subshift of non-superlinear maximal pattern

complexity. The goal of this subsection is to prove Proposition 4.6 which states that an

infinite minimal subshift with non-superlinear maximal pattern complexity must have MEF

either the product of a circle with a finite cyclic group or an odometer.

We start with the following nice consequence of the Peter-Weyl theorem [26]:

Lemma 4.3 ([26]). Every compact Hausdorff topological group is an inverse limit of Lie

groups.

Let (X,σ) be a minimal subshift of non-superlinear maximal pattern complexity and let

(G,+g0) be its maximal equicontinuous factor. By Lemma 4.3, G is an inverse limit of Lie
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groups, say G = lim←−Gi. Since G is metrizable, we can take (Gi) to be a sequence. Let

πi : G→ Gi and πj
i : Gj → Gi be the associated bonding maps. We can always assume that

πi, π
j
i are surjective. Compact monothetic (hence abelian) Lie groups have the form Td×Z⧸kZ

where d ∈ N0 and k ∈ N. Thus Gi = Tdi × Z⧸kiZ for all i. Since πj
i is surjective, (di) is a

nondecreasing sequence.

First, we will treat the special case that Gi is connected (i.e. ki = 1) for all i. In this case,

if di = 0 for all i, then G is just a single point. Now assume di ≥ 1 for all i. Each bonding

map πi+1
i : Tdi+1 → Tdi is a ti-to-1 covering map where ti ∈ N∪ {∞}. If all but finitely many

ti is equal to 1, then G is a torus. On the other hand, if ti ≥ 2 for infinitely many i, then G

is called a solenoidal space.

Lemma 4.4. If G is a torus of dimension ≥ 2 or a solenoidal space, then G cannot be

partitioned into two nonempty open sets and a countable set.

Proof. For contradiction, assume G = U0 ∪ U1 ∪ B is a partition where U0, U1 are nonempty

open sets, and B is countable.

Case 1: G is a torus of dimension ≥ 2. Let x ∈ U0 and y ∈ U1. There are uncountably

many disjoint paths in G connecting x and y. As a result, there is such a path P that does

not intersect B. Now P = (P ∩ U0) ∪ (P ∩ U1) is a partition of P into two disjoint open

subsets (relatively to P ) and this contradicts the fact that P is connected.

Case 2: G is a solenoidal space. By [24, Corollary 5.11], G has uncountably many (disjoint)

path components and so there is a path component P that does not intersect B. By [24,

Theorem 5.8], each path component, and so P , is dense in G. Therefore, P ∩ U0 and P ∩ U1

are nonempty. As in the previous case, this leads to a contradiction. □

The following lemma says that the boundary B in an associated MEF partition of a non-

periodic, minimal, non-superlinear maximal pattern subshift is nonempty.

Lemma 4.5. If X is an infinite minimal subshift with non-superlinear maximal pattern com-

plexity and G = U0 ∪ U1 ∪B is the associated partition of the MEF, then |B| > 0.

Proof. Let ϕ : X → G be the factor map from (X,σ) to its maximal equicontinuous factor

(G,+g0). If |B| = 0, then ϕ is an isomorphism. Note that the rotation on G is an isometry

(i.e. dG(x+ ng0, y + ng0) = dG(x, y) for x, y ∈ G and n ∈ N). On the other hand, since X is

a subshift, it is expansive (i.e. there exists C > 0 such that for x ̸= y ∈ X, dX(σnx, σny) > C

for some n ∈ N) unless X is a finite rotation. However, X is infinite and so this is not possible.

□

We can now complete our characterization of possible maximal equicontinuous factors for

minimal subshifts with non-superlinear maximal pattern complexity.

Proposition 4.6. If G is the MEF of an infinite minimal subshift with non-superlinear max-

imal pattern complexity, then G is either a product of a circle with a finite cyclic group or an

odometer.
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Proof. Let (X,σ) be an infinite minimal subshift with non-superlinear maximal pattern com-

plexity and (G,+g0) be its maximal equicontinuous factor. As discussed after Lemma 4.3,

G = lim←−Gi where Gi = Tdi × Z⧸kiZ for all i. Let πi : G → Gi and πj
i : Gj → Gi denote the

associated (surjective) bonding maps.

If di = 0 for all for all i, then G is either a finite cyclic group or an infinite odometer

lim←−
Z⧸kiZ. The finite case is impossible since X is infinite.

Next we claim that it cannot be true that that di ≥ 2 for large i. Let G = U0 ∪ U1 ∪B be

the associated partition of the MEF G. By Theorem 4.1 and Lemma 4.5, B is a nonempty,

finite set. Let H be a connected component of G. Then H is an inverse limit of the form

lim←−Tdi where the bonding maps πj
i : Tdj → Tdi are surjective continuous homomorphisms.

By Lemma 4.4, H cannot be partitioned into two disjoint open sets and a finite set. Thus if

U0 intersects H, U1 must be disjoint from H and vice versa. This holds for every connected

component H of G.

Without loss of generality, assume U0 and B intersect the connected component H. As

discussed above, U1 and H are disjoint. However, as B is the common boundary of U0 and

U1, and B is finite, there is a sequence of connected components (Hi) of G such that

(i) Hi ⊆ U1

(ii) B ∩H is in the closure of
⋃

iHi.

Let H0 be the connected component of G containing the identity 0G. Then we can write

H = g +H0 and Hi = gi +H0 for some g, gi ∈ G. Let b = g + h0 ∈ B ∩H where h0 ∈ H0.

Item (ii) implies that there exists a sequence hi ∈ H0 such that gi + hi → g + h0. Thus, for

any h ∈ H0, gi + hi + h→ g + h0 + h. Since h ∈ H0 is arbitrary, the entire H = g +H0 is in

the closure of
⋃

iHi. Therefore, the common boundary of U0 and U1 contains H instead of

just B, a contradiction.

It remains to deal with the case di = 1 for all but finitely many i. Similarly to the case

di ≥ 2, each connected component of G is an inverse limit of 1-dimensional tori and so is

a 1-dimensional torus or a solenoidal space. If they are solenoidal spaces, then arguing as

before, in light of Lemma 4.4, the common boundary of U0 and U1 cannot be finite. Thus

each connected component is the torus T. Consider two cases:

(i) Case 1: G has finitely many copies of the torus T, i.e. G ∼= T×Z⧸kZ for some k ∈ N.
We are done.

(ii) Case 2: G has infinitely many copies of the torus T, i.e. G ∼= T×O with the product

topology. Then two boundary points must be in one torus, say T × {y0}, and each

other torus belongs to either U0 or U1. Since the addition on the odometer O is

not periodic, the orbit of every point in T × {y0} visits T × {y0} only at the time

n = 0 and never returns. As a result, the (infinite) collection of points in T × {y0}
corresponds to only two possible coding sequences in X and this contradicts the fact

that X → G is a (surjective) factor map.

□

4.3. Characterizing recurrent sequences with non-superlinear maximal pattern

complexity. For the rest of this subsection, we assume that x is a nonperiodic, recurrent
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sequence with non-superlinear maximal pattern complexity. To use the results of the previous

subsection, we need to know that x generates a minimal subshift, i.e., is uniformly recurrent.

This is implied by Theorem D, which we prove now.

Proof of Theorem D. Suppose that x is recurrent but not uniformly recurrent. Then X =

O(x) properly contains a minimal subshift Y , and so there exists some N for which LX(N) \
LY (N) ̸= ∅.

Define a function ϕ : X → {0, 1}N0 as follows: for i ∈ N0, (ϕ(x))(i) = 1 if and only if

x([i, i + N)) ∈ LY (N). Then ϕ is a so-called sliding block code, meaning that the image

x′ := ϕx of the recurrent sequence x is also recurrent. We note that since Y ⊆ X, x′ contains

arbitrarily long strings of 1s, and since LX(N) \ LY (N) ̸= ∅, x′ contains a 0. This implies

that the block 01n is a subword of x′ for all n, and so must appear twice in x′ by recurrence,

implying that 1n0 is also a subword of x′ for all n.

For the rest of this argument we bound maximal pattern complexity of x′. We will construct

a sequence of windows τn ⊆ N with |τn| = 2n, beginning with τ0 = {0}.
For any n, suppose that τn has been defined, and that M is sufficiently large so that

x′([0,M ]) contains all τn-words in Lx′(τn). By recurrence, we may choose K > max(τn) so

that x′([K,K +M ]) = x′([0,M ]). Define τn+1 = τn ∪ (K + τn).

By definition of K, for every word w ∈ Lx′(τn), we have ww ∈ Lx′(τn+1). For any w

containing a 0, if ww were the only word in Lx′(τn+1) beginning with w, then every copy of

w in x′ would force a w exactly K units later, and this would continue indefinitely. This is

impossible since it contradicts x′ containing arbitrarily long strings of 1s.

So, for every w ∈ Lx′(τn) except 1
τn , w is a prefix of at least two words in Lx′(τn+1). We

now choose D greater than the diameter of τn+1. Since 1D0 is a subword of x′, by beginning

at the left edge of this word and moving to the right, for each 1 ≤ i ≤ |τn| = 2n, we can

find a word in Lx′(τn+1) beginning with 1τn and with leftmost 0 at the ith location within

the second copy of τn. This means that 1τn is a prefix of at least 2n words in Lx′(τn+1) other

than 1τn+1 .

Putting this together yields |Lx′(τn+1)| ≥ 2|Lx′(τn)|+ 2n − 1. A simple proof by induction

then yields the inequality |Lx′(τn)| ≥ (n+ 2)2n−1 for all n.

Then, if one defines the window ρn = τn + [0, N), clearly |Lx(ρn)| ≥ |Lx′(τn)|, since ϕ is

a surjection from the former set to the latter. Since |ρn| ≤ N2n and pattern complexity is

monotone, we arrive at p∗x(N2n) ≥ (n + 1)2n−1 for all n. For arbitrary k, we can take the

maximal n for which N2n ≤ k to get

p∗x(k) ≥ p∗x(N2n) ≥ (n+ 1)2n−1 ≥ k
n+ 1

4N
≥ k log2(k/N)

4N
,

yielding

lim inf
k→∞

p∗x(k)

k ln k
≥ 1

4N ln 2

and completing the proof. □
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In light of Theorem D, we now know that x is uniformly recurrent and X = Orb(x) is

a minimal subshift with non-superlinear maximal pattern complexity, implying by Proposi-

tion 4.6 that the MEF of X is either the product of a circle and a finite cyclic group or an

odometer. We begin with the first case.

Proposition 4.7. If x is a recurrent sequence with non-superlinear maximal pattern com-

plexity and if X = Orb(x) has MEF a product of a circle with finite cyclic group, then x

is a periodic interleaving of finitely many sequences which are each either a circle rotation

interval coding sequence or constant, and all of the circle rotation interval coding sequences

are associated with the same irrational rotation.

Proof. By Theorem D, x is uniformly recurrent and X is minimal; denote its MEF by(
T× Z⧸kZ,+(α, 1)

)
, and denote this group by G. Denote the associated MEF partition

by {U0, U1, B}.
Then by Theorem 3.6, there exists a partition {B0, B1} of B and g ∈ G so that the orbit of

the identity is coded by x in the sense that x(n) = i if and only if n(α, 1) ∈ (Ui ∪Bi)− g. We

note that for each j, the sets (Ui ∪ Bi) − g induce a partition {A(j)
0 , A

(j)
1 } of T × {j}, which

must be either trivial (i.e. one of the sets is empty) or into finitely many intervals (since all

endpoints are elements of B).

Split x into the sequences x(j), 0 ≤ j < k, defined by x(j)(n) = x(j + nk). Then for each j,

the sequence x(j) is obtained by coding the orbit of jα under rotation by kα by the partition

{A(j)
0 , A

(j)
1 } since

x(j)(m) = x(j +mk) = i⇐⇒ (j +mk)(α, 1) = (jα+m(kα), j) ∈ (Ui ∪Bi − g)

⇐⇒ jα+m(kα) ∈ A
(j)
i .

If the partition {A(j)
0 , A

(j)
1 } is trivial, then x(j) is constant, and if it consists of finitely many

intervals, then x(j) is a circle rotation interval coding sequence by definition. This completes

the proof. □

It remains only to treat the case where the MEF of X is an odometer.

Proposition 4.8. If x is a recurrent sequence with non-superlinear maximal pattern com-

plexity and if X = Orb(x) has MEF an odometer, then x is an element of an m-hole Toeplitz

subshift for some m > 0.

Proof. Suppose that x is as in the theorem. As before, X must be minimal and denote by

O = lim←−
Z⧸nkZ its MEF. Then since X is an almost 1-1 extension of O, it is a Toeplitz

subshift with period structure (nk). By Corollary 4.2, there is an associated MEF partition

with |B| = m <∞, which implies by Corollary 3.9 that X is an m-hole Toeplitz subshift.

□

Remark 4.9. We note that although the converse of Proposition 4.7 holds, i.e. all such

codings of circle rotations have linear maximal pattern complexity, it is very much false for

Proposition 4.8; there exist 1-hole Toeplitz sequences which are not even null (see [21, Section

11]) and so have p∗x(n) = 2n.
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Proof of Theorem C. The theorem follows by combining Propositions 4.7, 4.8 and Theorem D.

□

5. Pattern Sturmian: minimal case and proof of Theorem A

We now restrict to the case where x is pattern Sturmian (recall that this means p∗x(n) = 2n

for all n), and recurrent, therefore uniformly recurrent by Theorem D. We will show that

x must be either a circle rotation interval coding sequence or a sequence in a nearly simple

Toeplitz subshift.

Our main tool is the fact that by Theorem 4.1, Lemma 4.5, and Proposition 4.6, the minimal

subshift X = Orb(x) has an associated MEF partition with G either the product of a circle

and a finite cyclic group or an odometer, and |B| either 1 or 2.

We again begin with the case where G is the product of a circle and a finite cyclic group.

The following lemma is needed for Proposition 5.2 and Proposition 6.3.

Lemma 5.1. Let I be a nonempty, proper interval on T and α be an irrational number. Let

x(n) = 1I(nα) for all n ∈ N0. There exists k ∈ N such that for sufficiently large n, the window

τ = {0, k, 2k, . . . , (n − 1)k} satisfies |Lx(τ)| = 2n and Lx(τ) does not contain the constant

words 00 . . . 0 and 11 . . . 1.

Proof. Suppose I = (a, b), [a, b), (a, b], or [a, b]. Without loss of generality, assume 0 < b−a ≤
1/2. Denote the interval I1 = I and I0 = [0, 1) \ I. Choose k so that θ = kα mod 1 satisfies

θ < min{|I0|, |I1|}. (1)

Additionally, choose k so that

there is no integer m for which b− a = mθ or a− b = mθ mod 1. (2)

(This is possible since if b − a = m1k1θ = m2k2α mod 1, then since α is irrational, m1k1 =

m2k2. Then we just need to choose k sufficiently large.)

Let n be large enough so that the gaps between adjacent elements of {0, θ, . . . , (n − 1)θ}
in T is less than min{|I0|, |I1|}. Let τ be the n-window {0, k, 2k, . . . , (n− 1)k}. We will show

that τ satisfies the conclusion of our lemma.

For every t ∈ T,

(t, t+ kα, . . . , t+ (n− 1)kα) = (t, t+ θ, . . . , t+ (n− 1)θ).

By the denseness of {0, θ, . . . , (n − 1)θ}, for every t ∈ T, at least one of the elements t, t +

θ, . . . , t + (n − 1)θ belongs to I0 and one belongs to I1. It follows that the constant word

00 . . . 0 and 11 . . . 1 do not belong to Lx(τ).

It remains to show that |Lx(τ)| = 2n. Now if

mθ ∈ (Ic0) ∩ (Ic1 − θ) ∩ · · · ∩ (Icn−1 − (n− 1)θ),

then

x(mk + τ) = c0c1 . . . cn−1.
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Since {mθ : m ∈ N} is dense in T, |Lx(τ)| is equal to the number of tuple (c0, . . . , cn−1) so

that the intersection

(Ic0) ∩ (Ic1 − θ) ∩ · · · ∩ (Icn−1 − (n− 1)θ) (3)

is nonempty.

By (1), each nonempty intersection in (3) is connected. This can be proved by induction

on n and using the fact that I − (n− 1)θ and I − nθ always intersects.

Note that I = {I0, I1} is a partition of the circle T. By (2), no two endpoints of I − iθ

coincide and so the partition

I ∨ (I − θ) ∨ · · · ∨ (I − (n− 1)θ) (4)

where “∨” means the common refinement of the partitions consists of exactly 2n subintervals.

As discussed before, each interval produces a unique n length word in Lx(τ) and we are

done. □

Proposition 5.2. Let X be a minimal pattern Sturmian subshift and let G be its MEF. If

G is the product of a circle and a finite cyclic group, then G is the circle and there is an

associated MEF partition with |B| = 2.

Proof. It is immediate that the associated partition G = U0 ∪ U1 ∪ B must have |B| = 2

since a circle can only be disconnected by removing at least two points. The only case which

must be ruled out is G = T × Z⧸kZ for some k ≥ 2. Assume for a contradiction that G is

of this form, and without loss of generality that B = {(a, 0), (b, 0)} for some a ̸= b ∈ T and

T× {1} ⊆ U1.

Suppose the rotation onG is (α, 1) where α ∈ T is irrational and 1 ∈ Z⧸kZ. The subsequence
x′ = (x(kn))n∈Z is then a coding of the rotation by α on the circle T× {0}. By Lemma 5.1,

there exists n and an n-window τ such that |Lx′(τ)| = 2n and Lx′(τ) does not contain the

constant words 00 . . . 0 and 11 . . . 1.

Now, consider the window τ ′ = kτ . By considering shifts by multiples of k, we have

Lx′(τ) ⊆ Lx(τ
′). In addition, since all coordinate in the shifted window τ ′+1 is congruent to

1 mod k, x(τ ′+1) is the constant word 11 . . . 1. It follows that |Lx(τ
′)| ≥ 2n+1, contradicting

the assumption that x is pattern Sturmian. □

We now approach the case of G an odometer, which is more difficult since it can be discon-

nected by boundary sets of cardinality 1 or 2. We will, however, prove that if X is pattern

Sturmian, then there must exist an MEF partition with |B| = 1, which implies that X is a

1-hole Toeplitz by Corollary 3.9. Then, Theorem 2.13 implies thatX is nearly simple Toeplitz.

We first need the following lemma about an explicit maximal 3-window for simple 1-hole

Toeplitz sequences.

Lemma 5.3. If x is a simple 1-hole Toeplitz defined by odometer with period structure (nk)

and sequence ak ∈ {0, 1} (meaning that all residue classes mod nk except one are filled with

the letter ak), and c < d < e < f < g < h are chosen with ac = ae = ag = 0 and

ad = af = ah = 1, then the window τ = {0, ne, nf} is maximal, and

Lx(τ) = {000, 001, 010, 100, 101, 111}.
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Proof. Assume that x is such a sequence and that c < d < e < f < g < h are chosen as

above. By shifting x, we may assume that 0 is the nonconstant residue class (mod nk) for

k ≤ h. In other words, making the notation x(i, n) := x(i + nN), for all k ≤ h, x(i, nk) is

a constant sequence of ak unless i = 0. Phrased slightly differently, for k ≤ h, if m ∈ N
is a multiple of nk but not nk+1, then x(m) = ak. We note that this implies that for any

m = ±ni0 ± ni1 ± · · · ± nij for i0 < i1 < · · · < ij ≤ h, x(m) = ai0 .

Define the window τ = {0, ne, nf}; we exhibit the claimed words via shifts of τ .

• x(τ + nc) = x(nc, nc + ne, nc + nf ) = acacac = 000.

• x(τ + nd) = x(nd, nd + ne, nd + nf ) = adadad = 111.

• x(τ + nf − ne) = x(−ne + nf , nf ,−ne + 2nf ) = aeafae = 010.

• x(τ + ng) = x(ng, ne + ng, nf + ng) = agaeaf = 001.

• x(τ + ng − nf ) = x(−nf + ng, ne − nf + ng, ng) = afaeag = 100.

• x(τ + nh − nf ) = x(−nf + nh, ne − nf + nh, nh) = afaeah = 101.

Since simple Toeplitz sequences are pattern Sturmian, p∗x(3) = 6 and so these are all of the

words in Lx(τ). □

Proposition 5.4. If X is minimal pattern Sturmian with MEF an odometer, then there exists

an associated MEF partition with |B| = 1.

Proof. Assume that X is minimal and pattern Sturmian, with the MEF being the odometer

O = lim←− Z⧸nkZ. Since X is an almost 1-1 extension of O, it is a Toeplitz subshift with

period structure (nk). By Theorem 4.1 and Lemma 4.5, (X,σ) has an associated MEF

partition with boundary set B of cardinality 1 or 2.

If |B| = 1, the proof is complete. So the remaining case is |B| = 2, say B = {(ik), (jk)} ⊆ O.
Without loss of generality, we assume that i0 ̸= j0 by truncating (nk) if necessary. We also

note that (ik), (jk) are not in the orbit of 0 in O by definition of MEF partition, and so

ik, jk → ∞. Then, the coding sequence x from Theorem 4.1 is a 2-hole Toeplitz; for each k

and 0 ≤ i < nk, x(i, nk) := x(i+ nkN0) is constant if and only if i /∈ {ik, jk}.
Now, x′ = x(i0, n0) and x′′ = x(j0, n0) are both 1-hole Toeplitz sequences with period

structure (nk/n0), and for any window τ , Lx(n0τ) contains Lx′(τ)∪Lx′′(τ). This immediately

implies that both x′ and x′′ are pattern Sturmian, and so by Theorem 2.13, each is either a

simple Toeplitz or has a decomposition into residue classes where one residue class is a simple

Toeplitz and other residues are constant. In fact, the proof of Theorem 2.13 in [14] shows

that this decomposition can always be taken modulo the first period in the period structure,

which for x, x′′ is n1/n0. Therefore, by truncating the first term from (nk), we may assume

without loss of generality that x′ and x′′ are simple.

Say that x′ and x′′ are defined by the sequences of letters (ak), (bk) respectively. If there

exist infinitely many k for which ak ̸= bk, then we may assume without loss of generality that

there are infinitely many e for which ae = 0 and be = 1. Since each sequence takes values 0, 1

infinitely often, by taking e large enough we may then choose c < c′ < d < d′ < e < f < g <

g′ < h < h′ so that

• ac = ae = ag = 0
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• ad = af = ah = 1

• bc′ = be = bg′ = 1

• bd′ = bh′ = 0.

Then, we define τ = {0, ne/n0, nf/n0} (recalling that the period structure for x′ and x′′ is

(nk/n0)). By applying Lemma 5.3 to x′ and c < d < e < f < g < h, we get Lx′(τ) =

{000, 111, 001, 010, 100, 101}. If bf = 0, then applying Lemma 5.3 to the bit flip of x′′ and

c′ < d′ < e < f < g′ < h′ yields Lx′′(τ) = {000, 111, 110, 101, 011, 010}. Then Lx(n0τ) ⊇
Lx′(τ)∪Lx′′(τ) = {0, 1}3, and so p∗x(3) = 8, a contradiction. If instead bf = 1, then the same

argument from the last bullet point in the proof of Lemma 5.3 shows that Lx′′(τ) contains

bfbebh′ = 110. Then again Lx(n0τ) ⊇ Lx′(τ)∪Lx′′(τ) has size greater than 6, a contradiction.

We may therefore assume that ak = bk for sufficiently large k, and by passing to a subse-

quence of (nk) if necessary, that ak = bk for all k and alternates between 0 and 1, i.e. either

ak = bk = k (mod 2) for all k or ak = bk = k + 1 (mod 2) for all k.

We assume for a contradiction that there exists k where jk − ik ̸= nk/2. Without loss of

generality, we can then assume (by shifting, truncating (nk), and possibly switching ik and

jk) that i0 = i1 = i2 = 0 and j0 < n0/2. If we define g = gcd(j0, n0) ≤ j0 < n0/2, then

the sequence y := x(0, g) is still a 2-hole Toeplitz sequence, with period structure (nk/g)

and two nonconstant residue classes 0, jk/g for each k. In addition, y is nonperiodic and

Lx(gτ) ⊇ Ly(τ) for all τ , so y is pattern Sturmian. We may then replace x, (nk), (jk) with

y, (nk/g), (jk/g), and so assume without loss of generality that g = gcd(j0, n0) = 1.

The key to the rest of our proof is the following observation: if, for any k, there exists

r ∈ (0, nk), r ̸= ±(jk − ik), so that x(ik + r, nk) = aN0 and x(jk + r, nk) = aN0 are different

constant sequences, then x is not pattern Sturmian, yielding a contradiction. To see this, we

first note that x′k := x(ik, nk) and x′′k := x(jk, nk) are simple 1-hole Toeplitzes with the same

period structure and generating letters, and so have the same language. We may then consider

a maximal 2-window τ for x′k and x′′k, meaning that |Lx′
k
(τ)| = |Lx′′

k
(τ)| = 4. Now, if r as

above exists, define the window τ ′ := nkτ + r. By considering shifts in nkN0 + ik, we see that

Lx(τ
′) contains all words in Lx′

k
(τ) followed by a, and by considering shifts in nkN0+jk, we see

that Lx(τ
′) contains all words in Lx′′

k
(τ) followed by a. Therefore, |Lx(τ

′)| = 8, contradicting

the fact that x is pattern Sturmian.

Therefore, for all k, such r does not exist. Since 0 < j0 < n0/2, we know n0 > 2 and 2j0 /∈
{0, j0} (mod n0). Therefore, x(2j0, n0) is a constant sequence, say, without loss of generality,

of all 0s. For any 2 < m < n0, since gcd(j0, n0) = 1, (m − 1)j0 ̸≡ ±j0 (mod n0), and so by

taking r = (m−1)j0, we see that x(i0+r, n0) = x((m−1)j0, n0) and x(j0+r, n0) = x(mj0, n0)

are the same constant sequence, i.e. all 0s. Therefore, since gcd(j0, n0) = 1, all residue classes

(mod n0) except 0 and j0 are 0s.

If a1 = b1 = 1, then all x(m,n1) with m ∈ {0, j0} (mod n0) but m /∈ {0, j1} (mod n1) are

constant sequences of 1s. We then define r = n0 − j1. First, x(r + i1, n1) = x(n0 − j1, n1) is

all 0s since n0 − j1 ≡ −j0 /∈ {0, j0} (mod n0). And x(r + j1, n1) = x(n0, n1) is all 1s since

n0 ≡ 0 (mod n0) but n0 /∈ {0, j1} (mod n1). This again yields a contradiction.
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Finally, if a1 = b1 = 0, then a2 = b2 = 1, and by definition all x(m,n2) with m /∈ {0, j1}
(mod n1) are all 0s and all x(m,n2) with m ∈ {0, j1} (mod n1) but m /∈ {0, j2} (mod n2) are

constant sequences of 1s. We then define r = n1− j2. First, x(r+ i2, n2) = x(n1− j2, n2) is all

0s since n1− j2 ≡ −j0 /∈ {0, j0} (mod n0). And x(r+ j2, n2) = x(n1, n2) is all 1s since n1 ≡ 0

(mod n1) but n1 /∈ {0, j2} (mod n2). This yields our final contradiction, meaning that our

original assumption that jk − ik ̸= nk/2 for some k is false.

Therefore, jk − ik = nk/2 for all k. In addition, for each 0 < r < nk/2, x(ik + r, nk) and

x(jk + r, nk) must be the same constant sequence, meaning that in fact x is constant on all

residue classes (mod nk/2) except ik for all k. Therefore, in fact x is a 1-hole Toeplitz with

period structure (nk/2) and nonconstant residue classes (ik). This means that x comes from

coding the MEF partition of the associated odometer O′ where Ui consists of the disjoint

union of all clopen sets coming from residues m (mod nk) for which x(m,nk) is a constant

sequence of all is. This partition has B = {(ik)}, and since |B| = 1, the proof is complete. □

Proof of Theorem A. If x is a recurrent pattern Sturmian sequence, then by Theorem D,

Proposition 4.6, and Proposition 5.2, X = Orb(x) is minimal and its MEF is either the circle

or an odometer. If the MEF is the circle, then Theorem 3.6 and Proposition 5.2 together

imply that x is a simple circle rotation coding sequence. If the MEF is an odometer, then X

is Toeplitz and by Theorems 2.13, 3.9, and 5.4, X is an nearly simple 1-hole Toeplitz. □

6. Pattern Sturmian: nonrecurrent case and proof of Theorem B

Finally, we wish to characterize nonrecurrent pattern Sturmian sequences. Suppose that

x is such a sequence. Then it is not uniformly recurrent, but its orbit closure X contains

a uniformly recurrent sequence y, which must itself be periodic or pattern Sturmian since

p∗y(n) ≤ p∗x(n) = 2n. If y is pattern Sturmian, then by Theorem A, it is either a simple circle

rotation coding sequence or it is in a nearly simple Toeplitz subshift, in which case we can

assume without loss of generality that y is a nearly simple Toeplitz sequence. Our proof of

Theorem B will consist of three pieces:

(i) y cannot be a nearly simple Toeplitz sequence;

(ii) if y is a simple circle rotation coding sequence, then x is a nonrecurrent simple circle

rotation coding sequence;

(iii) if y is periodic, then it is constant and x is almost constant.

We begin with the first result.

Theorem 6.1. If a pattern Sturmian sequence x has orbit closure X containing y which is

nearly simple Toeplitz, then x is recurrent.

Proof. Suppose that x is pattern Sturmian and has orbit closure X containing nearly simple

Toeplitz y with period structure (nk), and without loss of generality suppose that all residue

classes of y (mod n1) are constant except for the single y(i1 + n1N) which is simple Toeplitz.

Now, fix any k ≥ 2. Since the orbit closure of x contains y, x contains arbitrarily long words

on which all but one residue class (mod nk) are constant and equal to the same letter ak and

the remaining residue class is a subword of the simple Toeplitz sequence m(k) := y(ik +nkN).
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Let’s begin with the case ak = 1. Then by Lemma 5.3, there exists a 3-window τk so that

Ly(k)(τk) = {000, 111, 001, 010, 100, 101}. Since y(k) is uniformly recurrent, there exists Nk >

diam(τk) so that every word in Ly(k) of length Nk contains all six words in Ly(k)(τk).

Let’s say specifically that pk < qk are chosen such that qk − pk > nkNk and that x(i) = 0

if pk ≤ i < qk and i ̸= i′k (mod nk), and wk := x([pk, qk) ∩ (i′k + nkN) is a subword of y(k).

Then since wk has length at least Nk, it contains 000, 111, 001, 010, 100, 101 as τk-subwords.

This means that Lx(nkτk) contains these words as well, and so cannot contain 011 or 110 by

the assumption that x is pattern Sturmian. For each i ∈ [0, nk), i ̸= i′k, x(i + nkN) contains

Nk > diam(τk) consecutive 1s. If this sequence contained a 0, then without loss of generality,

we could consider it the nearest 0 to the consecutive 1s, and we would have either 011, 110 as

a nkτk-subword, a contradiction. Therefore, for each such i, x(i+ nkN) is constant of all 1s.
If instead ak = 0, we would apply Lemma 5.3 to the bit flip of y(k) to get a 3-window τk

with Ly(k)(τk) = {000, 111, 011, 101, 110, 010}, and the same argument shows that all residue

classes of x except one are constant sequences of 0s.

In either event, we have shown that for all k ≥ 2, all residue classes of x except one are

constant and equal to ak. The same proof, applied to k = 1, shows that all residue classes of

x except one are constant, and up to a shift coincide with those of y. Therefore, x is in the

orbit closure of y and is (uniformly) recurrent.

□

We now examine the case where y is a simple circle rotation coding sequence.

Lemma 6.2. Let I, J be two nonempty intervals on T and α be an irrational number. If

there exist arbitrarily long intervals F ⊆ N0 such that 1I(nα) = 1J(nα) for n ∈ F then I = J

except possibly at the endpoints.

Proof. If the conclusion does not hold, then (I \ J) ∪ (J \ I) contains a nonempty interval.

Since (nα)n∈N0 is dense on T, and the system (T, nα) is minimal, the set of return times

to (I \ J) ∪ (J \ I) is syndetic. Thus, there exists some r so that if |F | > r, then there is

some n ∈ F such that nα ∈ (I \ J) ∪ (J \ I). For this n we will have 1I(nα) ̸= 1J(nα), a

contradiction. □

Proposition 6.3. Let x ∈ {0, 1}N0 be a pattern Sturmian sequence. Let I be a nonempty,

proper interval of T and α be an irrational number. Suppose there exist arbitrarily long

intervals F ⊆ N0 such that x(n) = 1I(nα) for all n ∈ F . Then x(n) = 1J(nα) for all n ∈ N0

where J = I except possibly at the end points.

Proof. Let y(n) = 1I(nα) for all n ∈ N0. By Lemma 5.1, there exists k such that for all

sufficiently large n, the window τ = {0, k, 2k, . . . , (n−1)k} satisfies |Ly(τ)| = 2n. By uniform

recurrence of y, there exists N so that every N -letter subword of y contains all words in Ly(τ).

Since (x(n))n∈F = (y(n))n∈F for some interval of length at least N , Ly(τ) ⊆ Lx(τ). Since

x is pattern Sturmian, Lx(τ) = Ly(τ). Thus the languages of (x(kn))n∈N0 and (y(kn))n∈N0

are the same. It follows that (x(kn))n∈N0 belongs to the orbit closure of (y(kn))n∈N0 , i.e.

x(kn) = 1x0+J0(knα) for all n ∈ N0, where x0 ∈ T and the interval J0 is equal to I except
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possibly at the end points. By a similar argument, for j = 0, 1, . . . k − 1,

x(kn+ j) = 1xj+Jj (knα) for all n ≥ 0,

where xj ∈ T and Ji = I except possibly at the endpoints.

It follows from our assumption that for arbitrarily long intervals F ⊆ N0,

(x(kn+ j))n∈N0 = (1xj+Jj (knα))n∈N0

and the sequence

(y(kn+ j))n∈N0 = (1I((kn+ j)α))n∈N0 = (1I−jα(knα))n∈N0

are the same. By Lemma 6.2, xj + Jj = I − jα except possibly at the end points. Letting

Ij = xj + Jj + jα, we have Ij = I except possibly at the endpoints and

(x(kn+ j))n∈N0 = (1Ij ((kn+ j)α))n∈N0 .

Since (nα) lands at each endpoint of I at most once, we can modify I at the endpoints to

create an interval J such that x(n) = 1J(nα) for all n ∈ N0. □

Proposition 6.4. If x ∈ {0, 1}N0 is a nonrecurrent, pattern Sturmian sequence whose orbit

closure contains an infinite minimal subsystem, then x(n) = 1I(nα) for all n ∈ N0, where α

is irrational and I is an interval of T of the form (k1α, k2α) or [k1α, k2α] mod 1 for some

k1 ̸= k2 ∈ N0.

Proof. Let x be a nonrecurrent, pattern Sturmian sequence whose orbit closure contains an

infinite minimal subsystem Y . Since x is pattern Sturmian, so is Y , and so by Theorem A,

Y is the orbit closure of a simple circle rotation coding sequence or a nearly simple Toeplitz

sequence. By Theorem 6.1, Y cannot be the orbit closure of a nearly simple Toeplitz sequence,

and so Y must be the orbit closure of a simple circle rotation coding sequence. Thus for

arbitrarily long intervals F ⊆ N0, (x(n))n∈F = (y(n))n∈F for some y a simple circle rotation

coding sequence. It then follows from Proposition 6.3 that x(n) = 1I(nα) for all n ∈ N0,

where α is irrational and I is an interval of T.
If I has the form [a, b) or (a, b], then x is recurrent and this contradicts our hypothesis.

If one of the endpoints of I is not in {kα : k ∈ N0}, then we can change I to an interval of

the form [a, b) and the sequence x stays the same. In this case, x is recurrent and again this

contradicts our hypothesis. Thus I = (k1α, k2α) or [k1α, k2α] for some k1, k2 ∈ N0 and we are

done. □

Finally, we deal with the case where all possible m are periodic; the eventual goal is to

show that m is constant and x is almost constant.

Lemma 6.5. If x ∈ {0, 1}N0 has arbitrarily long blocks of consecutive 0s and arbitrarily long

blocks of consecutive 1s, then x is not pattern Sturmian.

Proof. Assume that x has arbitrarily long blocks of 0s and 1s, and for any n, let τ be the

window {0, 1, . . . , n − 1}. By considering shifts of τ whose right edge lies within a block of

0s of length at least n in x, we see that Lx(τ) contains 0n and, for every 0 < i < n, a word

ending with 10i. A similar argument using a long block of 1s shows that Lx(τ) contains 1n
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and, for every 0 < i < n, a word ending with 01i. All of these words are distinct, yielding

2n words in Lx(τ). Now, choose any ℓ for which x contains a block of 0s of length exactly ℓ,

meaning that x contains 10ℓ1. Since x contains a block of 0s of length greater than ℓ, x also

contains 0ℓ+11.

But both of these words end with 01, meaning that for n = ℓ + 2, Lx(τ) is strictly larger

than the previous set of 2n words, so p∗x(n) > 2n and x is not pattern Sturmian.

□

Proposition 6.6. If the orbit closure of x ∈ {0, 1}N0 has two distinct periodic orbits, then x

is not pattern Sturmian.

Proof. Since x is not eventually periodic, it suffices to show that p∗x(n) ≥ 2n + 1 for some

n. Suppose that the orbit closure of x contains periodic sequences w1w1 . . . and w2w2 . . .

with distinct orbits. Then x contains arbitrarily long blocks of the forms w1w1 . . . w1 and

w2w2 . . . w2.

Let k be a common multiple of the lengths of w1 and w2. Then for every j ∈ {0, . . . , k−1},
the sequence (x(kn+ j))n∈N0 contains arbitrarily long blocks of 0s or 1s.

We claim that there exists j such that (x(kn + j))n∈N0 contains arbitrarily long blocks of

1s and arbitrarily long blocks of 0s. Assume this is not the case. Let M be such that for all

j, the longest 0 or 1-block of (x(kn+ j))n∈N0 is bounded above by M . For i ∈ {1, 2}, let mi

be such that the word x([kmi, k(mi + M)]) is a subword of a block of the form wiwi . . . wi.

Because for all j = 0, . . . , k − 1, the size of window {km1 + j, . . . , k(m1 +M) + j} is M + 1

(in particular greater than M), by our assumption,

x([km1 + j, . . . , k(m1 +M) + j]) = x([km2 + j, . . . , k(m2 +M) + j]).

In particular, for all j = 0, . . . , k − 1,

x(km1 + j) = x(km2 + j).

It follows that w1, w2 generate the same periodic orbit (i.e. one is a rotation of the other) and

this is a contradiction.

Fixing j found in the previous paragraph, then the subsequence (β(n))n∈N0 = (x(kn +

j))n∈N0 has arbitrarily long blocks of consecutive 0s and consecutive 1s. By Lemma 6.5,

p∗β(n) ≥ 2n+ 1 for some n and our lemma follows since p∗x(n) ≥ p∗β(n). □

Proposition 6.7. Let x ∈ {0, 1}N0 be such that x differs from the infinite sequence www . . .

on a set of Banach density zero for some finite word w. If w is not a constant word, then x

is not pattern Sturmian.

Proof. Assume that x and w are as in the statement, and assume that w contains both 0 and

1. Let k = |w|, the length of w. Consider the sequences (x(j)(n))n∈N0 = (x(kn + j))n∈N0 for

j ∈ {0, . . . , k − 1}. For each j, x(j) contains arbitrarily long blocks of consecutive 0s or 1s or

both. However, the last possibility is ruled out by Lemma 6.5, since p∗x(n) ≥ p∗
x(j)(n). Since

w contains both 0 and 1, there are j0, j1 ∈ {0, . . . , k − 1} that x(j0) contains arbitrarily long

blocks of 0s and x(j1) contains arbitrarily long blocks of 1s. Because x is nonperiodic, we can
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choose j0, j1 so that at least one of x(j0), x(j1) is nonperiodic. Without loss of generality (and

by switching 0 and 1 if necessary, which does not change any hypothesis or conclusion of the

proposition), assume x(j0) is nonperiodic.

We will show that there exists a 3-window τ such that

|Lx(j0)(τ) ∪ Lx(j1)(τ)| ≥ 7.

It then easily follows that p∗x(3) ≥ 7, implying that x is not pattern Sturmian.

For any 3-window τ , Lβ0(τ) always contains 000 and Lβ1(τ) always contains 111. Moreover,

if n is the location of an 1 before entering a long block of 0s, then x(n + τ) = 100. Thus

Lβ0(τ) always contains 100, and a similar argument shows it always contains 001.

Let S = {s1 < s2 < . . .} be the set of locations where 1 appears in x(j0) and define

gn = sn+1 − sn. The set S is not syndetic because d∗(S) = 0 and so there exists n such that

gn < gn+1. (5)

Choose the window

τ = {0, gn, gn+1}. (6)

Then

x(j0)(sn + τ) = x(j0)({sn, sn+1, sn + gn+1}) = 110

because sn+1 < sn + gn+1 < sn+2. Furthermore,

x(j0)(sn+1 + τ) = x(j0)({sn+1, sn+1 + gn, sn+2]}) = 101

because sn+1 < sn+1 + gn < sn+2.

So far with the window τ in (6), we have shown Lx(j0)(τ) ∪ Lx(j1)(τ) contains 6 words

000, 001, 100, 111, 110, 101. It remains to find n so that we pick up the extra word 010 when

sliding the window τ along x(j0). For contradiction, assume there exists no such n.

Fix an n0 such that gn0+1 > gn0 . We claim that for all ℓ, there exists k ≥ 2 such that

gk−1 ≤ gn0 and gk > ℓ. For sufficiently large k (more specifically, if sk > gn0), we have

x(j0)(sk − gn + τ) = x(j0)({sk − gn, sk, sk + (gn+1 − gn)}) = u1v (7)

where u, v ∈ {0, 1}. By our contradiction assumption, u = 1 or v = 1. If sk is the location of

a 1 right before a very large block of 0s (say the length of this block is larger than ℓ), then

x(j0)(sk + (gn0+1 − gn0)) = 0 and so this forces x(j0)(sk − gn0) = 1. Since sk−1 is the location

of the last 1 before sk, we have

gk−1 = sk − sk−1 ≤ sk − (sk − gn0) = gn0 .

On the other hand, since the digit 1 at the location sk is followed by an ℓ-block of 0s,

gk = sk+1 − sk > ℓ. Our claim follows.

Let ℓ be arbitrary and fix k so that gk−1 ≤ gn0 and gk > ℓgn0 ≥ ℓgk−1. We will show

that x(j0) contains a sequence of ℓ + 1 1 symbols where the gaps between consecutive 1s are

bounded by gn0 . Since ℓ is arbitrary this will imply that the upper Banach density of 1 in

x(j0) is at least 1/gn0 and this contradicts the assumption that this density is zero. Thus we

will be done.
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Let st be the location of an 1 before a block of consecutive 0s of length greater than gk−gk−1.
Looking at (7), because

x(j0)(st) = 1 and x(j0)(st + gk − gk−1) = 0,

it must be that x(j0)(st − gk−1) = 1. Now let st − gk−1 plays the role of st. We then have

x(j0)(st − gk−1) = 1 and x(j0)(st − gk−1 + (gk − gk−1)) = x(j0)(st + gk − 2gk−1) = 0

force x(j0)(st−2gk−1) = 1. Continuing in this way, we obtain 1 at the following ℓ+1 locations

in x(j0)

st, st − gk−1, . . . , st − ℓgk−1.

At each step, we use the fact that gk > ℓgk−1 to make sure st + gk − ℓgk−1 > st and so

x(j0)(st+gk−ℓgk1) = 0. We have arrived at a contradiction, and so x is not pattern Sturmian,

completing the proof. □

Proof of Theorem B. Let x be a nonrecurrent, pattern Sturmian sequence and let X be the

orbit closure of x. Let y be a uniformly recurrent sequence in X. Then y is periodic or pattern

Sturmian. If y is pattern Sturmian, by Theorem A, y is either in a nearly simple Toeplitz

subshift (in which case it can be taken to be itself nearly simple Toeplitz) or a simple circle

rotation coding sequence. According to Theorem 6.1, the former case is impossible. If y is a

simple circle rotation coding sequence, then by Proposition 6.4, x is a (nonrecurrent) simple

circle rotation coding sequence and we are done.

Suppose y is periodic and let Y be the finite orbit of y (which is already closed). By

Proposition 6.6, X does not contain any other periodic subsystem. We can further assume

that X does not contain any nonperiodic minimal subsystems (otherwise we return to the

previous already-treated cases).

Now Theorem D implies that every recurrent point in X belongs to Y . It follows that

X is uniquely ergodic with the unique measure being the uniform probability measure µ

on Y . (This is because due to Poincaré’s recurrence theorem, the support of any invariant

measure contains a recurrent point. Thus, if there were a second invariant measure, the set

of recurrent points would be larger than Y .) By unique ergodicity, x is a generic point for µ,

which implies that it differs from some point of Y , which must be of the form .www . . ., on

a set of zero Banach density. Proposition 6.7 implies that w is a constant word and so x is

almost constant. □

We still do not know exactly which almost constant sequences are pattern Sturmian (recall

that x = 1S for S = {s1, s2, . . .} with sk+1 > 2sk is pattern Sturmian ([20]), but any sequence

starting with 00001011100 is not), leading to the following question.

Question 6.8. What else can we say about almost constant pattern Sturmian sequences? For

instance, are there stronger senses than upper Banach density in which the deviations from

constancy are ‘small’?
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