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Abstract. We investigate generic properties (i.e. properties corresponding to

residual sets) in the space of subshifts with the Hausdorff metric. Our results
deal with four spaces: the space S of all subshifts, the space S′ of non-isolated

subshifts, the closure T′ of the infinite transitive subshifts, and the closure

TT′ of the infinite totally transitive subshifts.
In the first two settings, we prove that generic subshifts are fairly degener-

ate; for instance, all points in a generic subshift are biasymptotic to periodic

orbits. In contrast, generic subshifts in the latter two spaces possess more in-
teresting dynamical behavior. Notably, generic subshifts in both T′ and TT′

are zero entropy, minimal, uniquely ergodic, and have word complexity which

realizes any possible subexponential growth rate along a subsequence. In ad-
dition, a generic subshift in T′ is a regular Toeplitz subshift which is strongly

orbit equivalent to the universal odometer.

1. Introduction

One of the most well-studied classes of topological dynamical systems are the
symbolically defined systems called subshifts; a subshift is a closed subset of AZ for
some finite alphabet A which is invariant under the shift map σ, and we denote the
set of subshifts on A by S[A].

In this work, we investigate the following question: what is the structure of a
generic (or ‘typical’) subshift? In order to treat all possible (finite) alphabet sizes,
we define S =

⋃
A⊂Z,|A|<∞ S[A] (there is no loss of generality in assuming the

alphabet is a subset of Z, since we could always achieve this by renaming.) We
endow this universal set of subshifts S with the Hausdorff metric (see Section 2 for
more details) and, as is often done, say that a property P is generic (equivalently,
that a generic subshift has property P ) if the set of subshifts with that property
is residual (contains a dense Gδ set) in the topological space S. Other works that
have used this topology include [12], [16], [27], [34], and [47].

The notion of genericity in dynamical systems has been long studied. Early work
in this direction includes that of Oxtoby and Ulam [39], who showed that for a cer-
tain class of measures on a compact manifold of dimension two or greater, a generic
volume-preserving homeomorphism is ergodic. Not long after, foundational work of
Halmos [32, 33] showed that a generic measure-preserving dynamical system (in the
weak topology) is weakly mixing, followed by Rohlin [43] showing that generically
such systems are not strongly mixing. In the topological setting, it was shown by
Kechris and Rosendal in [35] that in the space Homeo(K) of homeomorphisms of
the Cantor set K, the topological conjugacy class of a specific transformation T is
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residual. Although an explicit description of T was not given in [35], Akin, Glasner,
and Weiss in [2] later gave such a description, which showed that T was somewhat
degenerate dynamically.

Later, in [34], Hochman proved many results about more interesting generic
properties within some distinguished subspaces of Homeo(K), namely the spaces of
transitive1 and totally transitive systems. Interestingly, his proofs largely depend
on transferring genericity results from the space S(Q) of ‘subshifts’ with alphabet
the Hilbert cube Q, i.e. closed shift-invariant subsets of QZ. This is part of a
more general phenomenon first established in the measure-theoretic setting, where
often a property turns out to be generic in the space of transformations preserving
a prescribed underlying measure if and only if it is generic in the space of Borel
probability measures preserved by a prescribed continuous map (see [29], [34], [44]).

A key distinction between our setting S and the space S(Q) treated in [34] is
that all subshifts on finite alphabets are expansive. A result of Sears [46] shows that
expansive systems are meager in Homeo(K). We also note that S can be viewed as
a subset of S(Q) (by embedding Z into Q), but it is clearly meager there as well.
There’s then no immediate reason for a generic system in S to behave similarly to
those in Homeo(K) and S(Q).

However, under no restrictions, our results show that again generic systems in S
have quite degenerate properties; see Theorem 1.1. Upon restricting to subspaces
of infinite transitive/totally transitive systems, we show that there are also some
similarities; in both S and Homeo(K), generic transitive/totally transitive systems
are minimal, uniquely ergodic, and have zero (topological) entropy. There are,
however, substantial differences. For example, in the subspace of transitive home-
omorphisms in Homeo(K), Hochman shows [34, Thm. 1.1] that the topological
conjugacy class of the universal odometer is residual. In addition to the obvious
fact that subshifts with finite alphabet cannot be conjugate to odometers, there is a
deeper difference; topological conjugacy classes within S are necessarily countable,
and we prove that the space of infinite transitive subshifts is perfect, and so cannot
contain a countable residual set.

Before summarizing our main results, we give a bit more detail about the space
S and the associated Hausdorff metric. We can endow ZZ with the product topol-
ogy (viewing Z as a discrete space), and the subshifts in S are then precisely the
nonempty shift-invariant compact subsets of ZZ. We consider then the space S with
the Hausdorff metric, inherited from the space of all nonempty compact subsets of
ZZ. A useful informal description of this metric is that two subshifts X,Y are close
if, for some large value of n, the sets of n-letter words appearing in points of X and
those appearing in points of Y coincide.

Our main results all describe various properties of a generic subshift in S and
some distinguished subspaces. A common theme is that generic behavior often
turns out to be the ‘simplest possible’ subject to unavoidable restrictions. We
begin with the full space S, where we give a complete description of the dynamics
of a generic subshift.

Theorem 1.1. A generic subshift X in the space S of all subshifts has the following
properties:

1In [34], a system was defined to be transitive if it has a dense forward orbit; we will use the
same definition.
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(1) X is a countable shift of finite type which is a union of finitely many orbits
which are bi-asymptotic to periodic orbits (Theorem 3.6).

(2) The word complexity cX(n) of X grows linearly (Theorem 3.11).
(3) The automorphism group of X is virtually free abelian of finite rank (The-

orem 3.12).

Theorem 1.1 is a consequence of a technical result (Theorem 3.6) which shows
that a particular class called NMC subshifts are residual in S.

Theorem 1.1 immediately implies all (to the authors’ knowledge) existing results
in the literature about the structure of generic subshifts: for example, that a generic
subshift has zero entropy (proved by [27, 47]) and is language stable (proved by [16]).

It is natural to wonder what happens if instead of the universal space S of sub-
shifts, one works with the space of subshifts contained in some prescribed subshift
(as is often done, for example in [16, 27, 12]). For any nonempty shift of finite
type X, the subshifts contained in X form a clopen subset of S (see Lemma 2.3),
so our genericity results for S immediately imply analogous results for the space of
subshifts contained in X.

Our proof in fact shows that the space S has a dense countably infinite set
of isolated points whose complement is a Cantor set. Such a space is sometimes
referred to as Pe lczyński Space, due to a result of Pe lczyński [42] showing that
a compact zero-dimensional metric space having such structure is unique up to
homeomorphism. Then, by the previous paragraph, the topological structure of
the space of subshifts contained in any mixing shift of finite type is independent of
the shift of finite type; that is, any two such spaces of subshifts are automatically
homeomorphic (Corollary 4.3).

Genericity in S is then completely determined by the dense set of isolated points,
in the sense that a property is generic if and only if it holds for every subshift in
this set. Since these subshifts have highly degenerate dynamics, a natural step is
to consider the derived set of S obtained by removing its isolated points; we denote
this space by S′. We show that S′ is compact, totally disconnected, and perfect2,
and hence homeomorphic to the Cantor set; in particular, the question of genericity
in S′ is not nearly as trivial as in S. We also give a complete description of the
dynamics of a generic subshift contained in S′.

Theorem 1.2. A generic subshift X in S′, the derived space of S (consisting of
all non-isolated points of S), has the following properties:

(1) X is a countably infinite subshift in which every point is bi-asymptotic to
one of finitely many periodic orbits (Corollary 4.10).

(2) X has word complexity cX(n) whose growth is properly superlinear and sub-
quadratic, but there are subsequences along which cX(n) exhibits arbitrarily
slow proper superlinear growth (Corollaries 4.13 and 4.16).

Theorem 1.2 is a consequence of a technical result (Corollary 4.10) which shows
that a particular class called OMC subshifts are residual in S.

Theorem 1.2 implies that, similarly to S, a generic subshift in S′ possesses fairly
degenerate dynamics, although less so than in S. In particular, even in S′ a generic
subshift is ‘uninteresting’ dynamically (e.g., it is nontransitive, countable, and all
points are bi-asymptotic to periodic orbits). Just as before, we can restrict further

2This implies that the Cantor-Bendixson rank of S is one.
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to rule out such degenerate behavior, and this time restrict to the transitive sub-
shifts in S. To avoid pathological issues with the space, we again remove isolated
points of S, and thus we define T′ to be the set of infinite transitive subshifts in S′.
(We note that for transitive subshifts, being isolated is equivalent to being finite.)

It turns out that T′ is not closed, and hence not complete as a metric space,
so we consider its closure T′. In fact, T′ is precisely the space of chain transitive
subshifts; see [8, Prop. 3.2]. Within T′, generic subshifts possess much more
interesting dynamics.

Theorem 1.3. A generic subshift X in the closure T′ of the infinite transitive
subshifts has the following properties:

(1) X is a regular Toeplitz subshift (and hence is minimal, uniquely ergodic,
and has zero entropy) which factors onto the universal odometer (Theo-
rem 5.15).

(2) X has topological rank two (Corollary 5.29).
(3) X is strong orbit equivalent to the universal odometer, and in particular, the

dimension group of X has rank one and hence no nontrivial infinitesimals
(Corollary 5.32).

(4) There exist subsequences along which the word complexity function cX(n)
has any desired linear/polynomial/stretched exponential growth which is
consistent with X being infinite, minimal, and of zero entropy (Proposi-
tion 5.23).

(5) The automorphism group of X is generated by the shift map (Corollary 5.30),
and the mapping class group is trivial (Theorem 5.39).

In addition, for any increasing unbounded h : N→ R+, a generic subshift in T′ has
word complexity satisfying cX(n) < n+ h(n) along a subsequence (Corollary 5.25).

In [34], Hochman proves that in the space of transitive systems contained in
Homeo(K), the topological conjugacy class of the universal odometer3 is residual.
There is no hope for any conjugacy class to be residual in T′ (since every conjugacy
class is countable). However, Theorem 1.3 gives two natural versions of this fact
for our setting: the first is that the set of subshifts strong orbit equivalent to the
universal odometer is in fact residual in T′, and the second is that a generic subshift
in T′ is an almost 1-1 extension of the universal odometer (due to being Toeplitz).

Topological rank is a conjugacy invariant defined for minimal homeomorphisms
of the Cantor set (which we can consider for generic subshifts in T′ since they are
minimal); see [18]. A minimal Cantor system has topological rank one if and only
if it is an odometer, and hence this is not achievable for subshifts. Thus, within the
expansive setting, topological rank two is the least rank possible, and Theorem 1.3
shows that again this ‘simplest possible’ situation is generic in T′.

It is a well-known and difficult problem to characterize possible word complexity
functions cX(n) (see [26]), and the question of which growth rates can occur is
very much open. It is therefore somewhat interesting that a generic subshift in
T′ must achieve all possible linear/quadratic/stretched exponential growth rates
along subsequences; to our knowledge, no explicit examples of subshifts with this
property are known.

3Here, by the universal odometer we mean the unique (up to topological conjugacy) odometer
which factors onto every finite transitive subshift.
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Finally, we consider the subspace of infinite totally transitive subshifts TT′ in
S. Again this space is not closed, so we consider the closure TT′. In fact, TT′ is
precisely the space of totally chain transitive subshifts; see [8, Prop. 3.2]. We prove
that a generic system in TT′ again exhibits, in many ways, the ’simplest’ possible
behavior (though some properties, like being Toeplitz, are precluded by definition).

Theorem 1.4. A generic subshift X in the closure TT′ of the infinite totally
transitive subshifts has the following properties:

(1) X is zero entropy, minimal, topologically mixing, and uniquely ergodic
(Theorems 6.5 and 6.6).

(2) X has unique invariant measure which is weakly mixing and which has a
rigidity sequence (Theorems 6.9 and 6.10).

(3) X has topological rank two (Theorem 6.5).
(4) The dimension group of X has rank two and no nontrivial infinitesimals

(Proposition 6.20).
(5) The automorphism group of X is generated by the shift map (Corollary 6.24),

and the mapping class group of X is isomorphic to a subgroup of the affine
group of Q (Theorem 6.25).

In addition, for any increasing unbounded h : N → R+, a generic subshift in
TT′ has word complexity satisfying cX(n) < n+ h(n) along a subsequence (Corol-
lary 6.14).

We can see that many properties of generic subshifts in TT′ are similar to those
in T′. One difference is that a generic system in TT′ has dimension group with
rank two rather than one; however, this is the minimal possible given the restriction
(Corollary 6.19 in the main text) that nontrivial clopen sets for generic systems in
TT′ must have irrational measure. Another difference is that no orbit equivalence
class is residual in TT′ (Corollary 6.21 in the main text), whereas the strong orbit
equivalence class of the universal odometer is residual in T′.

The restrictions on the mapping class group reflect the simplicity of a generic
subshift in the totally transitive setting, given that [10] shows that the mapping
class groups of mixing shifts of finite type are rather large groups.

Our results here concern only the case of subshifts over the group Z, and a
natural question is the extent to which analogous results might hold for subshifts
over more general groups (see [27] for example). Our proofs rely heavily on the use
of Rauzy graphs (see Section 2 for definitions), and it is not (at least immediately)
obvious how to adapt the techniques used here beyond Z. Second, it would be
interesting to expand beyond the zero-dimensional realm. For example, shifts of
finite type are precisely the zero-dimensional Smale spaces, and as a starting point
one might consider the following question: for a fixed Smale space (X, f), what
is the structure of a generic subsystem within the space of compact subsystems
of (X, f) with the Hausdorff metric? We note that for a Smale space (X, f), a
Markov partition yields a shift of finite type cover π : (Y, σ)→ (X, f) which in turn
induces a continuous surjection from the space of subshifts of (Y, σ) to the space of
subsystems of (X, f).

Finally, we briefly describe the structure of the paper. Section 2 presents some
useful definitions and preliminary results. In Sections 3 and 4, we prove genericity
results about the universal subshift space S and the derived set S′, which lead to
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Theorems 1.1 and 1.2. The proofs in those sections rely on fairly technical argu-
ments about so-called Rauzy graphs, and the fact that generic properties in those
settings are essentially controlled by simple properties of the Rauzy graphs. In
Sections 5 and 6, we prove results about the closures T′ and TT′ of the spaces of
infinite transitive and totally transitive subshifts respectively; these lead to Theo-
rems 1.3 and 1.4. The proofs in these sections rely on more dynamical arguments;
a key technique in both is showing that for any subshift X satisfying weak hy-
potheses, there is a dense class of subshifts ‘similar’ to X (see Theorems 5.4 and
6.4).

2. Definitions and preliminaries

2.1. General symbolic dynamics definitions. Let A be a finite subset of Z.
We consider points in AZ as biinfinite sequences x = (xi)i∈Z where each xi ∈ A.
Using the metric on AZ defined by

(1) d(x, y) = 2− inf{|k| : xk 6=yk}

the space AZ becomes a compact metric space. (The set inside the infimum is
empty if and only if x = y, and in this case we declare the infimum to be ∞ and
correspondingly d(x, y) = 0.) We define the shift map σ : AZ → AZ by (σ(x))i =
xi+1 and note that σ is a self-homeomorphism of AZ. By a subshift (on A) we mean
a compact σ-invariant subset of AZ. Throughout, the term subshift will always refer
to a subshift on a finite alphabet A ⊂ Z.

Typically we only refer to a subshift via its corresponding domain X; when
necessary, we’ll write (X,σX) when we want to also indicate the respective shift
map.

The language of a subshift X on A, denoted L(X), is the set of all finite words
appearing as subwords of points in X. For any n ∈ N, we denote Ln(X) = L(X)∩
An, the set of n-letter words in L(X).

For a subshift X, the word complexity function of X is defined by cX(n) :=
|Ln(X)|.

For a subshift X and word w ∈ L(X) we denote by [w] the clopen subset in X
consisting of all x ∈ X such that x0 . . . x|w|−1 = w. By an X-cylinder set we mean
any set of the form [w] for some w ∈ L(X). Note that we use the term X-cylinder
set instead of the more commonly used ’cylinder set’ to refer to such sets, since we
use the term cylinder set to refer to a different class of objects (see Definition 2.2).

A subshift (X,σX) is transitive if there exists x ∈ X such that the set {σiX(x)}i∈N
is dense in X, and (X,σX) is totally transitive if for all n ≥ 1 there exists x(n) ∈ X
such that the set {σinX (x(n))}i∈N is dense in X. (In some settings, one may define
transitivity via the existence of a dense full two-sided orbit rather than our dense
forward orbit; when X is a compact metric space with no isolated points, the two
definitions are equivalent (see [1]).)

A subshift (X,σX) is topologically mixing if, for every v, w ∈ L(X), there exists
N so that for all n > N , [v] ∩ σnX [w] 6= ∅. A subshift X is minimal if for all
w ∈ L(X) and x ∈ X, w appears as a subword of x. A subshift (X,σX) is
uniquely ergodic if there exists precisely one σX -invariant Borel probability measure
on X. The (topological) entropy of a subshift (X,σX) is the quantity htop(σX) =
limn→∞

1
n log |Ln(X)|.
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A subshift X ⊂ AZ is a shift of finite type if there exists a finite set of words F
over the alphabet A such that X consists of all points in AZ not containing any
word from F . If Γ is a finite labeled directed graph with edge set E(Γ) then the set
of points obtained from biinfinite walks on Γ is a shift of finite type on the alphabet
E(Γ).

A (topological) conjugacy between subshifts (X,σX) and (Y, σY ) is a homeomor-
phism φ : X → Y such that φσX = σY φ. An automorphism of a subshift (X,σX) is
a conjugacy from (X,σX) to itself. The automorphism group of a subshift (X,σX)
(denoted by Aut(X,σX)) is the set of all automorphisms of (X,σX) with the oper-
ation of composition.

For a subshift (X,σX) we may consider the suspension space ΣσXX = (X ×
[0, 1])/ ∼ where (x, t) ∼ (σXx, t − 1) which carries a flow defined by φs(x, t) =
(x, t + s). The mapping class group M(σX) of (X,σX) is the group of isotopy
classes of orientation-preserving self-homeomorphisms of ΣσXX (for background
on mapping class groups of subshifts, see [10, 45]).

2.2. Minimality and notions of rank. For a subshift (X,σX) we let C(X,Z)
denote the group of continuous integer-valued functions on X. The coboundary
map ∂ : C(X,Z) → C(X,Z) is defined by ∂ : f 7→ f − f ◦ σX , and we define the
group of coinvariants associated to (X,σX) by

GσX = C(X,Z)/Image(∂).

Contained in GσX is a positive cone G+
σX = {[f ] | f is nonnegative}, and taking

the class [1] ∈ GσX of the constant function 1: x 7→ 1 as a distinguished order
unit, the triple (GσX ,G+

σX , [1]) is a unital preordered group (see [11]). If (X,σX) is
minimal then (GσX ,G+

σX , [1]) is a unital ordered group and (GσX ,G+
σX , [1]) is a simple

dimension group [28]. Since we will only consider GσX when (X,σX) is minimal,
through an abuse of language we will refer to (GσX ,G+

σX , [1]) as the dimension group
associated to (X,σX) (we will also often abuse language and simply write GσX to
refer to the triple).

By [28], for any minimal Cantor system (X,T ) there exists a properly ordered
Bratteli diagram such that (X,T ) is topologically conjugate to the Vershik map
on this Bratteli diagram. We say a minimal system (X,T ) has topological rank d
if it has a Bratteli-Vershik presentation for which the number of vertices per level
is uniformly bounded by d, and there is no Bratteli-Vershik presentation of (X,T )
whose number of vertices per level is uniformly bounded by a number less than d
(for more details on these definitions, see [18]). If two finite rank minimal subshifts
are topologically conjugate, then they have the same rank; see [24, Cor. 4.7] for a
proof of this.

2.3. The space of subshifts and some preliminary results. For a metric
space X, we let K(X) denote the space of nonempty compact subsets of X with the
Hausdorff metric. When X is compact, K(X) is compact, and when X is complete,
K(X) is complete. Recall ZZ is a complete metric space with the metric (1), and
hence K(ZZ) is complete. We may consider the space of subshifts as the subspace
of K(ZZ) consisting of nonempty compact sets K ⊂ ZZ such that σ(K) = K (we
assume from now on that all subshifts are nonempty). It turns out that in this
setting, the Hausdorff metric may be equivalently defined in terms of languages,
which we will instead use throughout.
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Definition 2.1. We define the space of subshifts S to be the set of nonempty
compact subsets K of ZZ such that σ(K) = K, together with the metric defined as
follows: for nonempty subshifts X,Y ,

(2) d(X,Y ) := 2− inf{n | Ln(X) 6=Ln(Y )}.

The metric defined on S above is equivalent to the Hausdorff metric inherited
from considering S as a subspace of K(ZZ). We note that S is closed in K(ZZ), and
hence complete; indeed, S is precisely the set of fixed points of the homeomorphism
σ̃ : K(ZZ) → K(ZZ) induced by the shift map σ : ZZ → ZZ. The space K(ZZ) is
totally disconnected, separable, and complete, since ZZ is complete; thus S is a
Polish space.

Definition 2.2. For a subshift X ∈ S and n ∈ N, the n-cylinder set of X in S is

[X,n] := {Y | Ln(Y ) = Ln(X)}.

A cylinder set is simply any such set [X,n]. For any subspace U in S, by a cylinder
set in U we will always mean the intersection of a cylinder set [X,n] in S with U .

It’s clear from the definition of the metric (2) that for every X and n, [X,n] =
{Y | d(X,Y ) < 2−n} = {Y | d(X,Y ) ≤ 2−(n+1)}, and so every cylinder set
is clopen by definition. Also, we note that any nonempty cylinder C = [X,n] in
a subspace U can, without loss of generality, always be assumed to be based at a
subshift Y in that subspace U .

For a subshift Y ∈ S, we let S(Y ) denote the space of subshifts contained in Y .

Lemma 2.3. For any subshift Y ∈ S, the space S(Y ) is compact, and when Y is
a shift of finite type, S(Y ) is also open in S.

Proof. Fix any Y ∈ S. Then there is a finite A ⊂ Z for which S(Y ) is a subset of
the compact set S[A], meaning that it suffices to prove that S(Y ) is closed. But this
is immediate; if Z is a limit of subshifts Zn ∈ S(Y ), then we can assume without
loss of generality that Ln(Zn) = Ln(Z) for all n. Since Zn ⊂ Y , Ln(Zn) ⊂ Ln(Y ),
so Ln(Z) ⊂ Ln(Y ) for all n, implying that Z ⊂ Y so Z ∈ S(Y ).

If Y is a shift of finite type, then there exists n and a finite set L of words so
that Y consists of all sequences in which every n-letter subword is in L. Then S(Y )
can be written as a union of cylinder sets [X,n] over all X where Ln(X) ⊂ L, so it
is open. �

A useful consequence of Lemma 2.3 is the following: for any shift of finite type
Y , any class of subshifts which is generic in S is also generic within the space S(Y ).

There is another quite useful way to view cylinders in S, which requires the
notion of Rauzy graphs.

Definition 2.4. For a subshift X and n ∈ N, the nth Rauzy graph of X is the
directed graph GX,n with vertex set Ln−1(X), and directed edges from w1 . . . wn−1

to w2 . . . wn for all w1 . . . wn ∈ Ln(X).

Example 2.5. If X is the golden mean subshift consisting of biinfinite sequences
on {0, 1} without consecutive 1s, and n = 4, then GX,4 is the following directed
graph:
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It is immediate from the definition that every Rauzy graph GX,n is essential, i.e.
that every vertex has at least one incoming edge and at least one outgoing edge.
In particular, this means that any finite path can be extended on the left and right
to a biinfinite path. All directed graphs we treat are assumed to be essential.

For each n ∈ N, there is a map from points of X to the Rauzy graph GX,n:
to any x ∈ X, associate the biinfinite path whose kth vertex is xk . . . xk+n−2 for
all k ∈ Z. Every biinfinite path in GX,n is associated to some biinfinite sequence,
which may or may not be in X.

The following lemma shows the fundamental connection between Rauzy graphs
and cylinders in the space S. It is immediate from the definitions, but is so funda-
mental to our arguments that we state it explicitly.

Lemma 2.6. For any subshift X and n ∈ N, [X,n] is the set of all subshifts Y for
which GX,n = GY,n. In particular, for any such Y , every y ∈ Y corresponds to a
biinfinite path on GX,n and every edge in GX,n is part of at least one such path.

We can now use Rauzy graphs to see that each cylinder set contains a maximal
element with respect to inclusion.

Definition 2.7. Suppose X is a subshift and GX,n is a Rauzy graph of X for some
n. For a subgraph G of GX,n, we define S(G) to be the subshift consisting of all
biinfinite sequences corresponding to paths on G. For a cylinder set C = [X,n],
define S(C) to be S(GX,n).

It is clear from the definition that for any cylinder set C = [X,n], the subshift
S(C) is always a shift of finite type, since it is defined in terms of allowed n-letter
words. We note that since GX,n is essential, every edge in GX,n is part of some
biinfinite path, so by Lemma 2.6, S(C) ∈ C.

The following lemma is left to the reader.

Lemma 2.8. For every cylinder set C, every Y ∈ C is a subset of S(C).

We now summarize the decomposition of finite directed graphs into irreducible
components from [37, Sec. 4.4].

Every directed graph G has an equivalence relation ∼ defined as follows: define
v ∼ v for all vertices v, and for any vertices v 6= w, set v ∼ w if and only if there
are (directed) paths from v to w and from w to v. Then the vertex set of G can
be partitioned into equivalence classes, and the induced subgraphs corresponding
to these equivalence classes are the irreducible components of G, which we denote
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by C1, . . . , Ck. We can then define the tree structure of G as a directed graph with
vertex set {Ci}ki=1, where there is an edge from Ci to Cj for i 6= j if and only if there
is a path in G from some vertex in Ci to some vertex in Cj . This directed graph
I(G) must have no cycles, since the existence of a cycle would imply equivalence of
vertices in distinct irreducible components, a contradiction to their definition. The
structural implication is that G must be a union of the components Ck, along with
some one-way edges between components corresponding to edges of I(G) (a single
edge in I(G) can of course correspond to many transitions between the associated
pair of components.)

We will change this decomposition very slightly: we allow finite one-way paths
between components and will then always assume that all Ci are nontrivial, i.e.
contain at least one edge. This can be done since components with no edges must
be a single vertex with no self-loop, and so can just be subsumed within a finite
simple transition path.

Any irreducible component with an outgoing edge but no incoming edge is called
a source, and any irreducible component with an incoming edge but no outgoing
edges is called a sink. A directed graph has a sink and source if and only if it is
not irreducible.

Finally, we prove two brief results about word complexity. The first requires a
definition; for a subshift X, we say that a word w ∈ L(X) is right-special if there
exist letters a 6= b so that wa,wb ∈ L(X). Equivalently, right-special words are
those with multiple preimages under the map f : Ln+1(X)→ Ln(X) which removes
the final letter. That description leads to the following immediate corollary.

Corollary 2.9. For any subshift X on A and any n,

cX(n+ 1)− cX(n) =
∑

w∈Ln(X)
w right-special

(|{a ∈ A | wa ∈ Ln+1(X)}| − 1).

Finally, we need to show that the set of subshifts satisfying a complexity restric-
tion infinitely often is residual. For any functions f, g : N → R+, let Sf,g denote
the collection of subshifts X for which f(n) ≤ cX(n) ≤ g(n) for infinitely many n.

Theorem 2.10. For any functions f, g : N→ R+, the set Sf,g is a Gδ in S.

Proof. Consider any such functions f, g. It suffices to simply note that Sf,g can be
written as⋂
N∈N

⋃
n>N

{X ∈ S | f(n) ≤ cX(n) ≤ g(n)} =
⋂
N∈N

⋃
n>N

⋃
X∈S,f(n)≤cX(n)≤g(n)

[X,n].

(Though the final union is technically over uncountably many X, [X,n] depends
only on Ln(X), for which there are only countably many possibilities. This will
be the case for many similar unions for the rest of the paper, which we will not
comment each time on.) �

3. The space S of all subshifts

We begin by working in the space S of all subshifts. Our main results here
determine the structure of a generic subshift in this space, which is quite degenerate.
In particular, we will show that there is a countable subspace of subshifts in S (which
are each, as dynamical systems, degenerate) which completely controls whether
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subsets of S are residual or not. As a side consequence, the results give drastically
simpler proofs of some results in the literature.

Definition 3.1. A directed graph has the no middle cycles property (or NMC) if it
contains no cycle K which has both an incoming edge (i.e. an edge whose terminal
vertex is in K and whose initial vertex is not in K) and an outgoing edge (i.e. an
edge whose initial vertex is in K and whose terminal vertex is not in K).

The following alternate representation of graphs having NMC will be helpful, for
which need a definition.

Definition 3.2. An empty barbell is a directed graph consisting of two vertex-
disjoint simple cycles with a single simple directed transition path between them.

Lemma 3.3. If a directed graph has NMC, then it can be written as a finite (not
necessarily disjoint) union of isolated simple cycles (i.e. simple cycles with no
incoming or outgoing edge) and empty barbells, where all isolated cycles, initial
cycles of empty barbells, and terminal cycles of empty barbells are vertex-disjoint.

If a directed graph can be written as such a union where no cycle is both initial
within one empty barbell and terminal within another, then it has NMC.

Figure 1. This graph
has NMC.

Figure 2. This graph
does not have NMC.

For instance, the graph shown in Figure 1 has NMC, while the graph shown in
Figure 2 does not have NMC, because of the upper-right cycle.

Definition 3.4. A subshift X has the no middle cycles property (or NMC) if there
exists n for which GX,n has NMC.

We denote by NMC the set of NMC subshifts in S. The following characteri-
zation of NMC subshifts will also be useful.

Lemma 3.5. A subshift X has NMC if and only if there exist finite sets P,M, S
of words so that every sequence in X is either of the form p∞, s∞, or p∞ms∞ for
some p ∈ P , m ∈ M , and s ∈ S, and so that no sequence can be written both as
p∞ and s∞ for some p ∈ P and s ∈ S.

Proof. To see that each NMC subshift has the claimed structure, choose such an
X and n for which GX,n has NMC. By Lemma 3.3, GX,n can be written as a
finite union of isolated simple cycles and empty barbells. Then all sequences in X
correspond to biinfinite paths from one of these cycles or empty barbells. Then we
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can define P to be words corresponding to initial cycles in empty barbells, S to
be words corresponding to isolated cycles or terminal cycles in empty barbells, and
M to be words corresponding to transition paths in empty barbells. The claimed
decomposition is immediate, and no p∞ and s∞ may be equal since no cycle can
be initial and terminal in two empty barbells (by Lemma 3.3).

Now, assume that a subshift X has the claimed decomposition for sets P,M, S.
By passing to subsets, we can assume without loss of generality that p∞, s∞ ∈ X
for all p ∈ P , s ∈ S. Now, choose N which is a common period for all sequences
p∞ and s∞ and which is greater than the lengths of all words in M . Note that the
sets of N -letter subwords of sequences of the form p∞ and s∞ must be disjoint,
since such a word determines its entire containing sequence.

Then GX,2N is just the finite union of the graphs induced by all sequences p∞,
s∞ for p ∈ P and s ∈ S, and all sequences of the form p∞ms∞ which are in X. It
is clear that the first two classes of graphs are simple cycles. We claim that each
graph induced by p∞ms∞ is an empty barbell consisting of a simple cycle induced
by p∞ with a single simple directed path to a simple cycle induced by s∞. Then
the union must be NMC by definition (the only cycles with incoming edges have
vertices corresponding to (2N−1)-letter subwords of some s∞, the only cycles with
outgoing edges have vertices corresponding to (2N−1)-letter subwords of some p∞,
and these sets are disjoint by definition of N), which will complete the proof.

To justify the claim, we only need to show that no two 5N -letter subwords of
y := p∞ms∞ can be equal unless they are both part of p∞ or s∞. First, assume
without loss of generality that m is minimal, which implies that p∞m1 and m|m|s

∞

are not N -periodic. Define the set S = {i | y(i) 6= y(i + N)}. Clearly S is finite
and contained in an interval of length 2N−1 (for any such i, either y(i) or y(i+N)
must be part of m). To any two 5N -letter subwords u = y(j) . . . y(j + 5N − 1) and
v = y(k) . . . y(k + 5N − 1) of y, we can associate the sets S(u) := {0 ≤ i < 4N |
u(i) 6= u(i + N)} and S(v) := {0 ≤ i < 4N | v(i) 6= v(i + N)}. These are just
intersections of S with an interval of length 4N , and the reader may check that the
only way for two such intersections to be equal is if they are empty, which happens
only if u, v were subwords of p∞ or s∞.

We have verified that each sequence p∞ms∞ induces an empty barbell consisting
of a simple cycle induced by subwords of p∞ with a single simple directed path to
a simple cycle induced by subwords of s∞, which, as described above, shows that
GX,2N has NMC, completing the proof.

�

We note that an immediate consequence of Lemma 3.5 is that NMC subshifts
have Cantor-Bendixson rank at most two. Specifically, points of the form p∞ms∞

(if any) are isolated in any NMC X, and upon their removal, X is finite and all
remaining points are isolated.

We can now prove our main result about S.

Theorem 3.6. Every NMC subshift X is isolated in S, and the set NMC of NMC
subshifts is dense in S. Thus, NMC is residual in S.

Proof. We first prove density. Consider any cylinder C = [X,n] in S with associated
Rauzy graph GX,n. We will find a subshift X ′ contained in C which has the
structure described in Lemma 3.5.
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Define by C1, . . . , Ck the irreducible components of GX,n. Recall that we can
assume without loss of generality that each Ci is nontrivial, i.e. contains at least
one edge, and that components can be connected by finite directed paths.

Now, to each edge e in GX,n, we associate a cycle or empty barbell as follows.

• If e is part of a (nontrivial) irreducible component Ci, then e is part of a
simple cycle Ke.
• If e is not part of such a component, then it must be on a simple transition

path from some Ci to some Cj , and by extending maximally forwards and
backwards, it is part of a simple directed path P from a source to a sink.
By the preceding argument, the initial vertex of P is part of a simple cycle
within a source, and the terminal vertex is part of a simple cycle within
a sink. Define Be to be the empty barbell consisting of these two cycles,
along with the simple transition path between them, which contains e.

Since each initial cycle of any Be is contained in a source and each terminal
cycle of any Be is contained in a sink, there is no cycle which is the initial in
some Be and terminal in some Be′ . Now we define a subshift X ′ ⊂ X to be all
sequences corresponding to a path contained entirely within some Ke or Be. It is
clear that X ′ has the structure from Lemma 3.5, so X ′ is an NMC subshift. Finally,
by Lemma 2.6, X ′ ∈ C = [X,n]. Since C was arbitrary, we’ve shown that NMC
subshifts are dense.

It remains to show that each NMC subshift X is isolated in S. Choose such a
subshift X, with associated NMC Rauzy graph GX,n.

By Lemma 3.3, GX,n can be written as a finite union of isolated simple cycles
and empty barbells; take N to be larger than the lengths of all transition paths for
empty barbells in GX,n. We claim that any Y ∈ [X,n + N ] must be equal to X,
which will clearly imply that X is isolated.

Choose any Y ∈ [X,n + N ]. Both X and Y must be subsets of S([X,n]),
(recall S([X,n]) is the set of all sequences corresponding to paths in GX,n). By
the structure of GX,n, all sequences in S([X,n]) are either induced by a cycle
(and therefore periodic) or induced by an empty barbell (and therefore eventually
periodic on both ends with a finite transition word of length less than N between).
By Lemma 2.6, every such periodic sequence coming from an isolated simple cycle
in GX,n must be in both X,Y , since the only biinfinite path containing any edge
of such a cycle is a biinfinite traversal of the cycle. If C is a cycle in GX,n which is
either initial or terminal within some barbell, then by Lemma 2.6, X and Y each
contain some sequence corresponding to a biinfinite path containing an edge of C.
All such paths contain a one-sided infinite traversal of C, and so by compactness,
both X and Y contain all periodic sequences induced by C.

Since Y ∈ [X,n + N ], for all i ≤ N , X and Y share the same sets of legal
length-i paths within biinfinite paths of GX,n corresponding to sequences in the
subshifts X,Y . This immediately implies that every sequence in S([X,n]) induced
by a barbell is either in both X,Y or neither of X,Y , since it is the only sequence
containing its transitional path, which has length less than or equal to N .

This means that every sequence in S([X,n]) is in neither/both of X,Y , and
S([X,n]) contains X and Y , so X = Y . Since Y ∈ [X,n + N ] was arbitrary, X is
isolated, and since it was an arbitrary NMC subshift, the proof is complete.

�
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Corollary 3.7. Every NMC subshift is a countable shift of finite type.

Proof. Since any NMC subshift X is isolated in S, there exists a cylinder C such
that C = {X}. But S(C) is always in C, so X = S(C), which is a shift of finite
type by definition. By definition, there exists n so that GX,n has NMC. It is clear
by Lemma 3.3 that such a graph has only countably many biinfinite paths, so X is
countable. �

By Theorem 3.6, the question of whether sets are residual in S is somewhat de-
generate; the countable set NMC of NMC subshifts is open and dense, so residual,
and any dense set must contain NMC, since NMC is precisely the set of isolated
points in S. So genericity of properties/sets in S is completely controlled by the
set NMC of NMC subshifts.

The following result is somewhat obvious, but we state it for completeness.

Corollary 3.8. The set of countable shifts of finite type is residual in S.

Proof. This is an immediate consequence of Theorem 3.6 and Corollary 3.7. �

We obtain as corollaries two results from the literature. The first, which is
immediate from Corollary 3.8, regards the genericity of zero entropy subshifts.

Corollary 3.9 ([47, 27]). The set Z of zero entropy subshifts is residual in S.

For the second, recall in [16] the class of language stable subshifts was introduced,
motivated by the study of characteristic measures for subshifts. Since countable
shifts of finite type have the language stable property, we also obtain as a corollary
the genericity of language stable subshifts proved in [16].

Corollary 3.10 ([16]). The set of language stable subshifts is residual in S.

We can also characterize word complexity for generic subshifts in S.

Corollary 3.11. The set of subshifts with linear complexity is residual in S.

Proof. By Lemma 3.5, every subshift in NMC is a finite union of periodic orbits
(which trivially have bounded word complexity) and orbits of sequences of the
form p∞ms∞. It’s easily checked that the subshift of such sequences has linear
complexity, since any subword of length n is determined by the ‘phase shift’ of
the periodic portions at its beginning and end and location, if any, of the central
m. So, each NMC subshift has linear complexity, and Theorem 3.6 completes the
proof. �

3.1. Automorphism groups of generic subshifts in S. In this section, we show
that the structure of the automorphism group of a generic subshift in S is virtually
free abelian of finite rank.

Theorem 3.12. The automorphism group of an NMC subshift X is an extension
of a finite group by a finite rank free abelian group whose rank is the number of
orbits of X. Consequently, the automorphism group of a generic subshift in S is an
extension of a finite group by a finite rank free abelian group, and hence is virtually
free abelian of finite rank.

Proof. By Lemma 3.5, the set O(X) is finite. Since automorphisms of a system
must permute orbits, there is a homomorphism

πO : Aut(X,σX)→ Sym(O(X))
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where Sym(O(X)) denotes the group of permutations on the set O(X). If an
automorphism α is in the kernel of πO(X) then it maps each orbit to itself, so upon

choosing representative points {xi}i∈O(X) for each orbit we have α(xi) = σki(α)(xi)
for each i ∈ O(X). The automorphism α is determined by this set of integers
{ki(α)}i∈O(X), and it follows there is an injective homomorphism ι : kerπO(X) →
Z|O(X)| given by ι : α 7→ (k1(α), . . . , k|O(X)|(α)). Thus kerπO(X) is free abelian.

To prove the claim regarding the rank, fix an orbit j ∈ O(X). By Lemma 3.5,
this orbit is forward asymptotic to some periodic point and backward asymptotic
to some periodic point, and we let pj denote the product of the periods of these
two periodic points. We may define an automorphism βj of X by acting as the
identity on all orbits besides j, and acting by the σpj on the orbit j. Then ι(βj) is
the vector consisting of all 0s except for a 1 in the jth component. Since j ∈ O(X)
was arbitrary, it follows that the image of the injective homomorphism kerπO(X) →
Z|O(X)| is rank |O(X)|. �

Remark 3.13. The mapping class group of a generic subshift in S is also virtually
free abelian of finite rank. This follows from genericity of NMC subshifts in S
together with the fact (which we don’t prove here) that the mapping class group of
an NMC subshift is virtually free abelian of finite rank.

4. The space S′ of all non-isolated subshifts

The previous section shows that NMC subshifts, which have quite degenerate
dynamics, completely determine which properties are generic in S. It is then natural
to ask what happens if one removes them from S, and so we make the following
definition.

Definition 4.1. Denote by S′ the complement of the set of NMC subshifts in S.

Note that clearly the derived set of S is contained in S′. The following shows
that S′ is in fact precisely the derived set of S.

Theorem 4.2. S′ is a perfect subset of S.

Proof. Note that S′ is clearly closed since NMC was open in S, so we need only
show that S′ contains no isolated points.

Consider any subshift X ∈ S′ and any n ∈ N. We will show that |[X,n] ∩ S′| ≥
2, and hence [X,n] ∩ S′ 6= {X}. Consider the Rauzy graph GX,n, which since
X /∈ NMC, must contain a cycle K with an incoming edge f (with initial vertex
not in K) and an outgoing edge g (with terminal vertex not in K); without loss
of generality we may assume that K is simple. Denote by P the simple subpath
of K from the terminal vertex of f to the initial vertex of g. Clearly the subshift
S([X,n]) consisting of all sequences corresponding to biinfinite paths in GX,n is in
[X,n]. Define a subshift Y as the subshift of all sequences corresponding to biinfinite
paths in GX,n not containing fPg as a subpath. It’s clear that Y ( S([X,n]);
since GX,n is essential, there is a biinfinite path in GX,n containing fPg, and the
corresponding sequence is in S([X,n]) but not Y . We now show that Y ∈ [X,n].

For every edge e in GX,n, since GX,n is essential, there is a biinfinite path Pe
in GX,n containing e. Since f, g are not part of P , any occurrences of fPg in Pe
are nonoverlapping. Given this, we define P ′e to be the biinfinite path obtained by
replacing every occurence of fPg in Pe (if any) by fPKg. Clearly P ′e still contains
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e, and does not contain fPg, so the corresponding sequence is in Y . Since e was
arbitrary, by Lemma 2.6 we have Y ∈ [X,n].

It remains only to show that S([X,n]) and Y are both in S′, i.e. not NMC
subshifts. Note that since GX,n is essential, for every k there exists a biinfinite path
Qk containing fPKkg. By the same argument above, we may assume that Qk does
not contain fPg, so that each Qk corresponds to a sequence yk ∈ Y ⊂ S([X,n]).
Now, Lemma 3.5 implies that neither Y nor S([X,n]) are NMC subshifts; they each
contain yk, which has a subword fPKkg which is not part of a one-sided periodic
portion, and for large enough k, the length of fPKkg would exceed the maximum
length of words in M from Lemma 3.5, a contradiction.

We’ve shown that |[X,n] ∩ S′| ≥ 2, and since X,n were arbitrary, the proof is
complete.

�

This leads to an interesting universality result for non-NMC shifts of finite type.
In [42], Pe lczyński proved that in the class of compact zero-dimensional metric
spaces, there is a unique (up to homeomorphism) space which has a dense set of
isolated points whose complement is homeomorphic to the Cantor set. In fact, we
now show that for any non-NMC shift of finite type Y , the space of subshifts of Y
is homeomorphic to the Pe lczyński Space.

Corollary 4.3. If Y is a shift of finite type which is not NMC, then the space
S(Y ) of subshifts of Y is homeomorphic to the Pe lczyński Space. In particular, the
spaces of subshifts of non-NMC shifts of finite type are all homeomorphic to each
other.

Proof. Let Y ∈ S be a shift of finite type which is not NMC. By Lemma 2.3, S(Y )
is clopen, and it is obviously a zero-dimensional metric space as a subset of S.
It follows then from Theorem 3.6 that NMC ∩ S(Y ) is dense in S(Y ), and that
NMC∩S(Y ) consists of isolated points in S(Y ). Thus by Pe lczyński’s uniqueness
result from [42], it remains to show that in S(Y ), the set E = S(Y ) \ NMC =
S′∩S(Y ) is a Cantor set. It’s clear that E is a metric space, and it’s nonempty since
it contains Y . Moreover, E is totally disconnected, and compact, since NMC∩S(Y )
is open in S(Y ). Finally, E is perfect since it’s the intersection of the open set S(Y )
with S′, which is perfect by Theorem 4.2. Altogether E is a nonempty compact,
totally disconnected, perfect metric space, and hence homeomorphic to the Cantor
set. �

While genericity in S′ is not trivially controlled by a countable set as was the case
in S, there are still cylinders in S′ for which every subshift contained in the cylinder
has somewhat degenerate dynamics. Consider, for instance, the subshift X given by
all nondecreasing sequences on the alphabet {0, 1, 2} (e.g. . . . 000111222 . . .). The
subshift X is not NMC (by Lemma 3.5), so X ∈ S′, but X is countable, and all
subshifts in [X, 2] share the set of 2-letter subwords {00, 01, 02, 11, 12, 22} with X
and so are contained in X. All such subshifts are countable, and not topologically
transitive; topologically, they are each a countable union of compactifications of Z.

In fact, we will show now that the union of a collection of similar ‘degenerate’
cylinders is actually dense in S′. We first need some definitions.

Definition 4.4. A directed graph has the one middle cycle property (or OMC) if
there exists a unique simple cycle K with both incoming and outgoing edges.
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Figure 3. A graph having OMC (see the far right cycle).

We can again give an alternate definition of OMC graphs as unions of basic
objects, for which we first need a definition.

Definition 4.5. An empty double barbell is a graph consisting of three vertex-
disjoint simple cycles and simple directed paths from the first cycle to the second
and from the second to the third.

We leave the proof of the following simple lemma to the reader.

Lemma 4.6. If a graph has OMC, then it can be written as a finite (not necessarily
disjoint) union of isolated simple cycles, empty barbells, and a single empty double
barbell, where all isolated cycles and cycles within empty/double barbells are vertex-
disjoint.

If a graph can be written as such a union where no cycle is both initial within
any barbell and terminal within another, and where the central cycle in the empty
double barbell is not part of any other empty barbell, then it has OMC.

An example of an OMC graph is given in Figure 3.

Definition 4.7. A subshift X has the one middle cycle property (or OMC) if there
exists n for which GX,n has OMC.

In some sense, the OMC subshifts are the simplest subshifts in S′ (i.e. the closest
to the NMC subshifts removed in the definition of S′). As will often be the case,
these simplest cases will in fact turn out to be generic (here in S′).

Let OMC denote the set of OMC subshifts. It’s easily checked that all OMC
subshifts have Cantor-Bendixson rank exactly three; all sequences corresponding
to a finite number of traversals of the unique central cycle of a double barbell are
isolated, and upon their removal the remaining subshift is a finite disjoint union of
infinite NMC subshifts, meaning it has rank two as argued before.

Theorem 4.8. If C is a cylinder set in S′, then C contains a nonempty cylinder
set D in S′ such that D is contained in OMC.

Proof. This proof is very similar to the proof of density in Theorem 3.6. The only
differences are that we know that every cylinder in S′ contains a non-NMC subshift
(which therefore has a Rauzy graph with a cycle with both incoming/outgoing
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edges), and that we need to ensure that we create a subshift whose Rauzy graph
has a single simple cycle with incoming/outgoing edges (rather than none).

Consider any cylinder C = [X,n] in S′ with associated Rauzy graph GX,n. We
may assume without loss of generality that X ∈ S′, and so GX,n is not NMC.
However, by Theorem 3.6, there exists an NMC subshift Y ∈ [X,n]. By the proof
of Lemma 3.5, there exist infinitely many N for which GY,N is NMC; choose such
N > n.

The Rauzy graph GX,n contains a simple cycle K with an incoming edge f and
outgoing edge g. Since GX,n is essential, we can extend K backwards and forwards
to obtain an empty double barbell subgraph D of GX,n which has K as its central
cycle. Define S = S(D); then S consists of shifts of sequences of the form p∞, m∞,
s∞, p∞qm∞, m∞rs∞, or p∞qmnrs∞ for some words p, q,m, r, s, where no two of
p∞,m∞, and s∞ are in the same orbit.

Define Y ′ = Y ∪ S. Consider GY ′,N , which is just the union of GY,N with any
new vertices/edges corresponding to (N − 1)- and N -letter subwords of sequences
in S. By the described structure of S, this is just the union of GY,N with an empty
double barbell D′ (which is not equal to D since N > n.)

We note that the initial cycle in D′ cannot be the terminal cycle of any empty
barbell in GY,N ; empty barbells used in the construction of Y always ended at sinks
of GX,n, which had no outgoing edges, and the same is true in GY,N since N > n.
Similarly, the terminal cycle of D′ cannot be the beginning of any empty barbell
in GY,N and the central cycle of D′ can be neither the initial nor terminal cycle of
any empty barbell in GY,N . Therefore, GY ′,N is OMC by Lemma 4.6.

But every subshift Z ∈ [Y ′, N ] ⊂ [X,n] = C has GZ,N = GY ′,N , so every such
Z is OMC. Since C was arbitrary, the proof is complete.

�

Since OMC subshifts are in a sense degenerate (they are never transitive, always
zero entropy), again most meaningful dynamical properties are not generic in S′.

Corollary 4.9. The sets M of minimal subshifts and UE of uniquely ergodic sub-
shifts are nowhere dense in S′.

Proof. We simply note that any subshift in OMC contains two different periodic
orbits as proper subsets, and so is neither minimal nor uniquely ergodic. Theo-
rem 4.8 then completes the proof. �

Corollary 4.10. OMC is residual in S′.

Proof. Simply note that OMC contains the union over all cylinders in S′ of the
subcylinders guaranteed by Theorem 4.8; this set is open and dense by definition.

�

Theorem 4.11. The uncountable subshifts are nowhere dense in S′, and therefore
the countably infinite subshifts are residual in S′.

Proof. The first statement follows immediately from Theorem 4.8 and the fact
that all OMC subshifts are countable; the second statement then follows since all
subshifts in S′ are infinite.

�
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4.1. Complexity for subshifts in S′. Generic subshifts in S′ no longer have linear
complexity, but their complexities still grow rather slowly. By Corollary 4.10, we
can prove that generic subshifts in S′ satisfy various complexity bounds by verifying
them for subshifts in OMC.

It turns out that every nonempty cylinder in S′ contains subshifts with complex-
ity arbitrarily close to linear.

Lemma 4.12. For any unbounded increasing f : N→ R and any nonempty cylin-

der C in S′, there exists Y ∈ S′ ∩ C with cY (m)
mf(m) → 0.

Proof. Fix any such function f . We assume without loss of generality that C =
[X,n] for some OMC subshift X. By increasing n if necessary, we may assume that
GX,n is OMC. By Lemma 4.6, we can write GX,n as a union of isolated simple cycles
Ki, empty barbells Bj , and an empty double barbell D, where all isolated cycles
and cycles within empty/double barbells are vertex-disjoint, where no cycle is both
initial within any barbell and terminal within another, and where the central cycle
in the empty double barbell is not part of any other empty barbell.

For any infinite R ⊆ N, we define a subshift Y (R) consisting of all sequences
corresponding to a biinfinite path contained within some Ki, Bj , or D, with the
additional restriction that the biinfinite path in D is not allowed to contain a
subpath of the form fPKng for P a proper subpath in K and n /∈ R. Note
that for all r ∈ R, Y contains a sequence yr corresponding to the unique (up to
shifts) biinfinite path in GX,n containing fPKrg. If Y (R) were an NMC subshift,
this would contradict Lemma 3.5; yr ∈ Y (R) contains a subword corresponding to
fPKrg which is not part of a one-sided periodic portion, and for large enough r,
the length of this subword would exceed the maximum length of words in M , a
contradiction. Therefore, Y (R) ∈ S′.

We now wish to bound from above the word complexity function of Y (R). Firstly,
just as in the proof of Corollary 3.11), the subshift of sequences corresponding to
biinfinite paths contained in any Ki or Bj has linear word complexity. Therefore,
it suffices to treat only sequences corresponding to biinfinite paths in D which do
not contain fPKng for n /∈ R. By definition of the Rauzy graphs, the number of
m-letter words in Y (R) is equal to the number of such paths of length m − n + 1
in D, so it suffices to estimate the number of paths of various lengths in D which
do not contain fPKng for n /∈ R.

First we denote the initial/terminal cycles in D by B and E (for beginning/end),
the transition paths by I (from B to K) and J (from K to E), the subpath of K
from the end of I to the beginning of J by P , and assume without loss of generality
that B and E are oriented so that B begins and ends at the initial vertex of I and
E begins and ends at the terminal vertex of J . Then the paths we wish to consider
are of one of the following forms:

(1) subpath of B∞

(2) subpath of E∞

(3) subpath of M∞

(4) subpath of B∞IP containing at least one edge of I
(5) subpath of JE∞ containing at least one edge of J
(6) subpath of B∞IPK∞ containing all of I
(7) subpath of K∞JE∞ containing all of J
(8) subpath of B∞IPKrJE∞ for some r ∈ R containing all of PKr
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It’s immediate that the number of paths of length n in any of the first seven
categories is either bounded in n or linear in n. So, it suffices to treat only category
(8). For any length n, there is a path in category (8) of length n for r ∈ R if and
only if r|K| ≤ n, and the number of such paths is n + 1 − r|K|. Therefore, the
number of total paths in category (8) is

(3) pn :=
∑

r∈R,r≤n|K|−1

(n+ 1− r|K|) ≤ n · |R ∩ {1, . . . , n}|.

Therefore, as long as we choose our infinite R in such a way that |R∩{1, . . . , n}| <√
f(n) for all n, then pn

nf(n) → 0, and as argued earlier, this implies that
cY (R)(m)

mf(m) →
0.

�

Corollary 4.13. For any unbounded increasing f : N→ R, the set

Sf := {X | cX(n) < nf(n) for infinitely many n}

is residual in S′.

Proof. That Sf is a Gδ follows from Lemma 2.10, and its density follows from
Corollary 4.10 and Lemma 4.12. �

Remark 4.14. We note that the choice of the much weaker complexity condition
in Corollary 4.13 is due to the fact that it is not clear whether the set of subshifts

satisfying cX(n)
nf(n) → 0 is a Gδ.

The strongest upper bound that we can give which holds over all lengths is
quadratic.

Lemma 4.15. For every OMC subshift X, there exist constants C,D,E so that
cX(n) ≤ Cn2 +Dn+ E for all n.

Proof. Choose any OMC subshift X and n for which GX,n is OMC. It’s easily
checked that every biinfinite path on G(X,n) is either periodic (i.e. repeated tra-
versal of a cycle), the unique path (up to shifts) on an empty barbell, or contained
within an empty double barbell. As before, the complexity of the subshift of points
corresponding to paths of the first two types is easily checked to be linear. So it
suffices to bound the complexity of the subshift of points corresponding to paths
on an empty double barbell D.

Fix any double barbellD, and let P (D) denote the set of sequences corresponding
to all paths contained in D (whether or not these sequences are in X). Then the
complexity of P (D) is clearly an upper bound for that of P (D) ∩X, so it suffices
to bound the complexity function for P (D).

For this, the same estimates from the proof of Lemma 4.12 can be used. In
particular, P (D) is equal to Y (N) defined in that proof, and so for all m (here
we use the fact that paths of length m are in bijective correspondence to words of
length m+ n in the language of P (D)),

cP (D)(m+ n− 1) = pm ≤ m|Z ∩ {1, . . . ,m}| = m2.

Since there are only finitely many empty double barbells D which are subgraphs
of GX,n, the proof is complete.

�
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Corollary 4.16. For a generic subshift in S′, there exist constants C,D,E so that
cX(n) ≤ Cn2 +Dn+ E for all n.

Proof. This follows immediately from Corollary 4.10 and Lemma 4.15. �

The following corollary is now immediate.

Corollary 4.17. The set Z of zero entropy subshifts is residual in S′.

Remark 4.18. We can theoretically find the automorphism group for a generic
subshift in S′ by finding the structure of such groups for OMC subshifts. This
turns out to be quite technical, and so we omit a formal proof here. However,
roughly speaking, such an automorphism group will come from the extension of a
finite group by some ZN (just as in the NMC case), along with additional com-
ponents coming from semidirect products of sums of countably many copies of Z
with permutations of N with finite support. These both come from how an auto-
morphism can act on orbits corresponding to paths on a double barbell; first note
that any such orbit is determined by a number of traversals of the central cycle.
Any automorphism is a sliding block code with fixed window size, and so can only
freely permute/shift orbits corresponding to small enough numbers of cycle tra-
versals; these permutations/shifts give rise to the direct sums of countably many
copies of Z (coming from shifts) and permutations of N with finite support (com-
ing from permutations) mentioned above. We leave an exact computation of these
automorphism groups to the interested reader.

5. The space T′ of infinite transitive subshifts

The last sections showed that in both S and S′, while the dynamics of a generic
subshift are rather simple, they are also rather degenerate. In particular, in both S
and S′ a generic subshift consists of sequences biasymptotic to periodic sequences.
It is natural then to restrict ourselves to classes of subshifts possessing properties
often of dynamical interest. Thus, in the remaining two sections we will focus
on the space of transitive subshifts, and the space of totally transitive subshifts,
respectively.

In these settings, there will no longer be degenerate subshifts which control
genericity, and in fact a generic subshift in these settings is dynamically much more
interesting. We will still show however that, in some sense, generic subshifts are as
‘simple as possible.’

We note that our consideration of the transitive and totally transitive classes is
analogous to the path taken by Hochman in [34], where the subspaces of transitive
and totally transitive systems within the space of homeomorphisms of the Cantor
set are studied.

We begin now with T, the set of transitive subshifts in S. It turns out (though
we don’t supply proofs here) that periodic orbits in T are dense and isolated just
as the set NMC was in S, so in order to get any meaningful results, we need to
remove these isolated points as before. Thus the main object of our study in this
section will be the space T′ = T ∩ S′.

Definition 5.1. Denote by T′ the intersection of T with the complement of NMC
in S.

As noted earlier, for transitive subshifts, being isolated is equivalent to being
finite, and hence T′ is precisely the set of infinite transitive subshifts in S.
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We note that T′ is not closed in S. To see this, for every n, define Xn to be the
subshift of all sequences created from biinfinite concatenations of the words 0n1n

and 0n+11n. Then each Xn is in T′, but it is not hard to check that their limit is
the union of the orbits of 0∞, 1∞, 0∞1∞, and 1∞0∞, which is not transitive. Since
we make use of the Baire Category Theorem (to guarantee that the intersection of
residual sets is residual), from now on we will work in the closure T′. However, our
results regarding genericity in T′ apply equally well to T′, due to the following.

Lemma 5.2. T′ is a dense Gδ in T′.

Proof. We first note that T′ is dense in T′ by definition. Also, T′ = T∩(NMC)c =
T ∩

⋂
X∈NMC{X}c. Since each singleton {X} is closed in the metric space S, it

then suffices to show that T is a Gδ in S.
We note that X is transitive if and only if for all k, there exists n so that for every

pair u, v of k-letter words occurring within words in Ln(X), there exists w ∈ Ln(X)
containing an occurrence of u to the left of an occurrence of v. For any k, n,A,
denote by Tk,n,A the set of subsets of An with this property. Then, the set T of
transitive subshifts can be written as⋂

k∈N

⋃
n∈N

A⊂Z,|A|<∞

{X ∈ S | Ln(X) ∈ Tk,n,A} =
⋂
k∈N

⋃
n∈N

A⊂Z,|A|<∞

⋃
X∈S

Ln(X)∈Tk,n,A

[X,n],

which is clearly a Gδ.
�

Thus, a property P is generic in T′ if and only if it is generic in T′, and henceforth
we will simply state our results for T′. We first show that T′ has no isolated points.

Lemma 5.3. T′ is a perfect subset of S.

Proof. The proof of this is nearly identical to that of Theorem 4.2. We simply need
to show that if the shift X in that proof is assumed transitive, then the subshift Y
constructed to belong to a cylinder [X,n] for an arbitrary n ≥ 1 is also transitive.
Recall that Y was constructed by forbidding a single path fPg on a Rauzy graph,
but there existed a cycle K so that the path fPKg, with the same initial/terminal
vertices as fPg, was still allowed.

Consider any two words u, v ∈ L(Y ); they correspond to paths Q,R in GX,n
which do not contain fPg. By irreducibility of GX,n, there exists a biinfinite path
P ′ in GX,n containing an occurrence of Q before an occurrence of R. By replacing
fPg by fPKg in the path P ′, we arrive at a path P ′′ in GX,n containing no
fPg. Also, P ′′ still contains an occurrence of Q before an occurrence of R (the
introduction of K into fPg does not change Q or R). Finally, P ′′ corresponds to a
point of Y containing an occurrence of u before an occurrence of v; since u, v were
arbitrary, Y is transitive.

The remainder of the proof of Theorem 4.2 demonstrates that all nonempty
cylinders in T′ have at least two subshifts, so no subshift in T′ is isolated. �

We will now prove a theorem that serves as our main tool for showing that
various sets are dense in T′. Before the theorem, we set some notation. Suppose
A is an alphabet and τ : {0, 1} → A` is an injective map. For any point y =
. . . y−1.y0y1 . . . ∈ {0, 1}Z we define τ(y) ∈ AZ by τ(y) = . . . τ(y−1).τ(y0)τ(y1) . . ..
For any subshift Y ⊂ {0, 1}Z, we define τ∗(Y ) to be the subshift {σiτ(y) | y ∈ Y, 0 ≤
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i < `} (note that, as sets, τ∗(Y ) is generally larger than τ(Y ), since τ(Y ) is generally
not shift-invariant). In this way, τ induces a map from subshifts Y ⊂ {0, 1}Z to
subshifts τ(Y ) ⊂ AZ.

Theorem 5.4. For any nonempty cylinder C = [X,n] in T′ (with associated al-
phabet AC), there exists ` ≥ n and an injective map τ : {0, 1} → A`C so that for
any subshift Y ∈ T′ contained in {0, 1}Z, we have τ∗(Y ) ∈ C. In addition, τ∗(Y )
is uniquely decipherable in the sense that every word in L(τ∗(Y )) of length at least
3`− 1 can be written as pτ(v)s in exactly one way for some v ∈ L(Y ), p a proper
prefix of some τ(a), and s a proper suffix of some τ(a).

Proof. Choose any cylinder C = [X,n]∩T′ as in the theorem. Since C is nonempty
and has nontrivial intersection with T′, we can without loss of generality assume
that X is transitive and infinite. Then the graph GX,n+1 is irreducible and not
a cycle. First, by irreducibility of GX,n+1, there exists a cycle K which visits all
vertices of GX,n+1. Without loss of generality, we assume that K is minimal with
respect to containment. This means that some vertex appears only once in K. To
see this, note that if all vertices appeared twice in K, then removal of any minimal
subcycle would yield a new K still containing all vertices (since a minimal cycle
cannot contain any vertex twice), contradicting minimality of K. Now, we break
into two cases. We let |K| denote the number of edges in K and let V denote the
vertex set of GX,n+1.

• If |K| > |V |, then denote by v any vertex appearing exactly once in K, and
reorder K so that it begins and ends with v (and does not pass through v
at any other time). Then, choose any proper subcycle K ′ of K (which must
exist by the Pigeonhole Principle). It cannot contain v (since v appeared
only at the beginning and end of K). Finally, reorder K so that it begins
and ends with whichever vertex w is at the start/end of K ′.
• If instead |K| = |V |, then K contains every vertex exactly once. As noted

earlier, GX,n+1 is not a cycle, so GX,n contains some edge e not in K, with
initial/terminal vertices v′, v′′. By the definition of GX,n+1, there cannot
be two edges from v′ to v′′, so the subpath P of K from v′ to v′′ has length
at least 2. So, we can replace P in K by e, yielding a cycle K ′ in GX,n+1

which does not contain all vertices. Denote by v a vertex missing from K ′,
and reorder K so that it begins and ends with whichever vertex w is at the
start/end of K ′.

In each case, we know that there are vertices v 6= w so that K and K ′ both
start/end with w, v appears only once in K, and v does not appear in K ′. Now,
we define two cycles L = KKK ′K ′K ′, L′ = KK ′KK ′K ′, and note that |L| = |L′|;
denote their common value by `. We note that each contains v exactly twice,
separated by distance |K| in L and by |K|+ |K ′| in L′.

By the usual Rauzy graph correspondence, L and L′ correspond to words t, t′ of
length `+ n in L(X) which each contain every n-letter word in L(X) (since K,K ′

contained all vertices in GX,n+1) and which begin and end with the same n-letter
word w. Denote by u, u′ the truncations of t, t′ obtained by removing their terminal
ws. Then define τ : 0 7→ u, 1 7→ u′. The reader may check that for any x ∈ {0, 1}Z,
τ(x) is a sequence corresponding to a biinfinite concatenation of L,L′, which is a
biinfinite path in GX,n+1, and so τ(x) ∈ S(C). Moreover, since τ(x) contains some
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concatenation in {u, u′}2, it contains either u or u′, and so contains all n-letter
words in L(X).

Then, for any subshift Y on {0, 1}, τ∗(Y ) is in [X,n] by Lemma 2.6. Finally,
it is routine to check that since Y ∈ T′, τ∗(Y ) ∈ T′ as well, so τ∗(Y ) ∈ C. It
remains only to prove the claimed unique decipherability. For this, we consider
distances between occurrences of v (viewed as a word in Ln(X)) in points of τ∗(Y ).
Such occurrences appear exactly once in each of t and in t′, at distances |K| and
|K|+ |K ′| respectively. These distances appear nowhere else in points of τ∗(Y ); all
other separations between nearest vs are at least |K|+ 2|K ′|.

Suppose that x is a word in L(τ∗(Y )) of length at least 3`− 1. It must contain
either u or u′, and therefore contains a pair of vs separated by distance either |K|
or |K|+ |K ′|. This pair uniquely determines its containing t or t′ and the location,
and so the representation x = pτ(v)s is unique as claimed.

�

We now have a strategy for showing that properties are generic in T′. We can
show that a property corresponds to a Gδ set directly, and as long as the property
holds for a single {0, 1} subshift and is preserved under any τ as in Theorem 5.4,
it is automatically dense in T′.

In fact the unique decipherability from Theorem 5.4 is quite powerful; in particu-
lar, it implies via the following that any cylinder in T′ contains an entire subcylinder
each of whose subshifts are of the form τ∗(Y ) (for τ, Y as in Theorem 5.4).

Theorem 5.5. For any nonempty cylinder C = [X,n] in T′ (with associated
alphabet AC) and τ : {0, 1} → A`C defined as in Theorem 5.4, the collection
{τ∗(Y ) | Y ⊂ {0, 1}Z} contains a nonempty subcylinder of C.

Proof. Choose X,n,C, and τ as in Theorem 5.4. We claim that

(4) [τ∗({0, 1}Z), 3`] ⊂ {τ∗(Y ) | Y ⊂ {0, 1}Z},

which will complete the proof, since the right-most set is a subset of C by Theo-
rem 5.4.

To see this, choose any Y ∈ [τ∗({0, 1})Z, 3`], and any y ∈ Y . By definition, every
(3` − 1)− and (3`)-letter subword of y is a subword of some τ(x), and so can be
written in a unique way as pτ(w)s for some w ∈ {0, 1}∗, p proper suffix of some
τ(a), and s proper prefix of some τ(b). For the rest of this proof, we refer to such
a representation of a word as a τ -decomposition.

We will prove by induction that all subwords of y of any length M ≥ 3` − 1
have a unique τ -decomposition. Our base case will be M = 3` − 1 and M = 3`,
which has already been shown by the above. Now, assume that the claim is true
for subwords of length M and M + 1 for M ≥ 3`− 1.

Now, choose any subword v of y of length M + 2, and write v = azb. By the
inductive hypothesis for M + 1, az and zb have unique τ -decompositions az =
pτ(w)s and zb = p′τ(w′)s′. Clearly v = azb cannot have two τ -decompositions,
since this would contradict uniqueness of the τ -decompositions of az, zb. So it
suffices to show that v has at least one τ -decomposition.

Each of az = pτ(w)s and zb = p′τ(w′)s′ yields a decomposition of z (by removing
the first letter of pτ(w)s and the last of p′τ(w′)s′, and these must be equal by the
inductive hypothesis for M .
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If p and s′ are nonempty, then denote by p and s′ the words obtained by deleting
their first/last letters respectively. Then the decomposition of z must be pτ(w)s =
p′τ(w′)s′, meaning that p′ = p, w = w′, s = s′. But this means that azb = pτ(w)s′,
yielding the desired τ -decomposition. If p is empty but s is not, then by similar
reasoning, p′ must be the word obtained by removing the first letter of τ(w1), w′ is
the word obtained by removing the first letter w1 of w, and azb = τ(w)s′. Similarly,
if s′ is empty but p is not, then s must be the word obtained by removing the last
letter of τ(w′|w′|), w is the word obtained by removing the last letter w′|w′| of w′,

and azb = τ(w′)s′. Finally, if both p, s′ are empty, then p′ must be the word
obtained by removing the first letter of τ(w1), s must be the word obtained by
removing the last letter of τ(w|w|), w2 . . . w|w| = w′1 . . . w

′
|w′|−1, and azb = τ(w),

where w = w′1w = w′w|w|. In every case, azb has a τ -decomposition, completing
the proof of the claim by induction.

Now, by taking limits, it’s clear that y itself can be written as σiτ(x) for some
0 ≤ i < ` and x ∈ {0, 1}Z. Since y was arbitrary and Y is a subshift, Y = τ∗(X)
for some subshift X ⊆ {0, 1}Z.

�

Though the next two results will be subsumed later by the fact that a generic
subshift in T′ is regular Toeplitz (Theorem 5.11), we provide short proofs to illus-
trate this technique.

Theorem 5.6. The set Z of zero entropy subshifts is residual in T′.

Proof. It’s clear that zero entropy is preserved under any letter-to-word substitution
τ , so by Theorem 5.4, it suffices to prove that the set of zero entropy subshifts is a
Gδ. For this, it clearly suffices to show that for any ε, the set Sε of subshifts with
entropy at least ε is closed. A proof of this is already given in [47], but we rewrite
it here for completeness.

Fix any ε. By the definition of topological entropy, a subshift X has h(X) ≥ ε
if cX(n) ≥ enε for all n, and by Fekete’s subadditivity lemma, the converse is also
true. Therefore, Sε can be written as⋂

n∈N
{X ∈ S | cX(n) ≥ enε},

and each set {X ∈ S | cX(n) ≥ enε} is clearly closed.
�

Theorem 5.7. The set M of minimal subshifts is residual in T′.

Proof. It’s clear that minimality is preserved under any letter-to-word substitution
τ , so again it suffices to prove that the set of minimal subshifts is a Gδ. From the
definition, we know that a subshift X is minimal if and only if for every k, there
exists n so that all words in Ln(X) contain all words in Lk(X) as subwords. Since
languages are factorial and extendable, we can rephrase this slightly: X is minimal
if and only if for all k, there exists n so that every word in Ln(X) contains all
k-letter words which appear as subwords of some word in Ln(X). For every k, n,A,
define Mk,n,A to be the set of subsets of An with the property above.

Then, the set of minimal subshifts can be written as⋂
k∈N

⋃
m,n∈N,

A⊂Z,|A|<∞

{X ∈ S | Ln(X) ∈Mk,n,A} =
⋂
k∈N

⋃
m,n∈N,

A⊂Z,|A|<∞

⋃
X∈S

Ln(X)∈Mk,n,A

[X,n],



26 RONNIE PAVLOV AND SCOTT SCHMIEDING

which is clearly a Gδ.
�

5.1. Regular Toeplitz subshifts in T′. Our first main goal is to show that a
generic subshift in T′ is regular Toeplitz. While this is in contrast to the more
degenerate systems that appeared generically in S and S′, it continues the theme
of generic systems being in some the sense the “simplest possible.”

Definition 5.8. A sequence x ∈ AZ is regular Toeplitz if for every ε > 0, there
exists n ∈ Z and a set S ⊂ [0, n) of integers for which |S| > (1− ε)n and, for each
s ∈ S, x(s + in) is independent of i ∈ Z, i.e. takes the same value for every i. A
regular Toeplitz subshift is the orbit closure of any regular Toeplitz sequence.

The difficulty in showing that regular Toeplitz subshifts are generic is that the
definition above involves an infinite amount of information (infinite arithmetic pro-
gression), and so a priori cannot be represented as a Gδ condition.However, with a
little effort, it turns out that the definition can be rephrased in a finite way, which
we present as an auxiliary lemma. We first need some definitions.

Definition 5.9. For any word w = avb of length at least 2 (a, b ∈ A), write p(w) =
av and s(w) = vb. For ε > 0 and n,N, k ∈ N, define a set W ⊂ AN to be (ε, n,N, k)-
regular Toeplitz compatible if, for every w ∈W and each u ∈ {w, p(w), s(w)}, there
exists a set S ⊂ [0, n) with |S| = k so that u(s+in) is independent of i ∈ [0, bN−sn c)
if and only if s ∈ S. In other words, each u which is either in W or equal to p(w)
or s(w) for some w ∈ W is constant on exactly k arithmetic progressions of step
length n.

Lemma 5.10. A sequence x is regular Toeplitz if and only if for every ε > 0, there
exist n,N, k for which the set LN (x) of N -letter subwords of x is (ε, n,N, k)-regular
Toeplitz compatible.

Proof. For the forward direction, assume that x is a regular Toeplitz sequence,
and fix any ε > 0. By definition, there exists n and a set S ⊂ [0, n) for which
|S|/n > 1 − ε and where x(s + in) is constant if and only if s ∈ S. (The reverse
direction wasn’t part of the definition, but clearly can be assumed by simply taking
S to be maximal.) Define k = |S| and note that k/n > 1−ε. There then must exist
M so that w = x([−M,M ]) is constant on exactly k of the arithmetic progressions
of step length n (and contains unequal letters in each of the other n− k arithmetic
progressions). By minimality of X, there exists N so that every (N − 1)-letter
subword of x contains w, and so fails to be constant on at least n − k arithmetic
progressions of step length n. However, as subwords of x, all such words are constant
on at least k arithmetic progressions of step length n, and so are constant on
exactly k such arithmetic progressions. Exactly the same argument works for N -
letter subwords of x, and so by definition, LN (x) is (ε, n,N, k)-regular Toeplitz
compatible.

For the reverse direction, assume that for all ε, there exist n,N, k so that the
set LN (x) of N -letter subwords of x is (ε, n,N, k)-regular Toeplitz compatible. We
claim that for all M ≥ N , the set LM (x) is (ε, n,M, k)-regular Toeplitz compatible,
which implies upon taking limits that x is constant on k arithmetic progressions
of step length n. This will complete the proof, since having this property for all ε
implies by definition that x is regular Toeplitz.
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We verify the claim by induction on M . The base case M = N holds by assump-
tion. Assume that LM (x) is (ε, n,M, k)-regular Toeplitz compatible, and consider
any w ∈ LM+1(x). We can write w = avb, and by assumption, each of v, av, and vb
(as either words in LM (X) or such words with first or last letter removed) is con-
stant on exactly k of its arithmetic progressions of step length n. Denote by S the
set of residue classes (mod n) on which av is constant, and T the corresponding
set for vb; then |S| = |T | = k. Clearly v is constant on all residue classes in S ∪ T ,
so |S ∪ T | ≤ k. Then it must be the case that S = T = S ∪ T . It’s easily checked
that w = avb is constant precisely on the residue classes in S ∩ T = S = T , and
so it is constant on exactly k of these. Since w ∈ LM+1(x) was arbitrary and the
same conclusion holds for u ∈ LM (x) by the assumption that LM (x) is (ε, n,M, k)-
regular Toeplitz compatible, we’ve shown that LM+1(x) is (ε, n,M + 1, k)-regular
Toeplitz compatible, completing the proof of the claim by induction. As mentioned
above, this completes the proof of the lemma as well. �

Theorem 5.11. The set of regular Toeplitz subshifts is residual in T′.

Proof. We first claim that the property of being regular Toeplitz is preserved under
any letter-to-word substitution τ as in Theorem 5.4. Choose any such τ (with

length `), regular Toeplitz X = O(x) with alphabet {0, 1}, and any ε > 0. By
definition, there exists n and a set S ⊂ [0, n) with |S| > (1 − ε)n so that x is
constant on all arithmetic progressions {s + in} with s ∈ S. But then clearly we
can define S′ ⊂ [0, n`) by S′ =

⋃
s∈S [s`, (s + 1)`), and then τ(x) is constant on

all arithmetic progressions {s′ + in`} with s′ ∈ S′. Since |S′| = `|S| > (1 − ε)n`,
we’ve shown that τ(x) is regular Toeplitz, so τ∗(X) = O(τ(x)) is a regular Toeplitz
subshift.

So using Theorem 5.4, it again suffices to prove that the set of regular Toeplitz
subshifts is a Gδ.

For any finite A ⊂ Z, denote by C(ε, n,N, k,A) the set of (ε, n,N, k)-regular
Toeplitz compatible subsets ofAN . Then by Lemma 5.10, the set of regular Toeplitz
subshifts can be written as⋂

t∈N

⋃
m,n,N,k∈N
A⊂Z,|A|<∞

{X ∈ S | LN (X) ∈ C(t−1,m, n,N, k)}(5)

=
⋂
t∈N

⋃
m,n,N,k∈N
A⊂Z,|A|<∞

⋃
X∈S

LN (X)∈C(t−1,m,n,N,k)

[X,N ],(6)

which is clearly a Gδ. �

The following is immediate, since regular Toeplitz subshifts are known to be zero
entropy, minimal, and uniquely ergodic [19].

Corollary 5.12. The set of zero entropy, minimal, uniquely ergodic subshifts is
residual in T′.

Remark 5.13. In [20] it was shown that Sarnak’s conjecture holds for all regular
Toeplitz subshifts. It follows from Theorem 5.11 then that Sarnak’s conjecture
holds for a generic system in T′.

In fact we can give slightly more information about a generic regular Toeplitz
subshift in T′: it must factor onto the universal odometer. For this, we will use the
following simple lemma.
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Lemma 5.14. For any subshift X and n ∈ N, if there exists a clopen set E so that
X =

⊔n−1
i=0 σ

iE, then all nth roots of unity are topological eigenvalues of (X,σ).

Proof. Letting ζn be a primitive nth root of unity, simply define the eigenfunction
f =

∑n−1
i=0 ζ

i
nχσiE . �

Theorem 5.15. The set of regular Toeplitz subshifts factoring onto the universal
odometer is residual in T′.

Proof. It suffices to show that the set of Toeplitz subshifts which contain Q in their
set of topological eigenvalues is generic in T′, and we will do this using Lemma 5.14.
Given any n, we will show that the set Pn of transitive subshifts X with a clopen
partition

⊔n−1
i=0 σ

iE is generic in T′.

Fix n ∈ N and let C be a nonempty cylinder in T′. Let X be the subshift on
the alphabet {0, 1} defined as the closure of the unions of orbits of all sequences of
the form

. . . (0ε01)(0ε11) . . .

for all sequences (εk) ∈ {n − 1, 2n − 1}Z. Then X is infinite and transitive so
X ∈ T′, and using the clopen subset E = [1] ∪ σn[1] it is straightforward to check
that X ∈ Pn as well. Then by Lemma 5.4 we may find ` and τ so that τ∗(X) is
contained in C and has unique decipherability as in Lemma 5.4. We claim that

τ∗(X) ∈ Pn`, which implies that τ∗(X) is also in Pn. (If X =
⊔n`−1
i=0 σiE, then

X =
⊔n−1
i=0 σ

iF for F =
⊔`−1
j=0 σ

jnE.)

To see this, define the clopen set D = τ(E), i.e. biinfinite concatenations coming
from sequences in E with ‘dividing line’ at the origin. This set is well-defined only
because of the unique decipherability of τ . Choose any 0 ≤ i < n`, and consider
the sets D and σiD. If i is not a multiple of `, then σiD and D are disjoint due to
unique decipherability of τ . If i = j` for some j < n, then σiD = τ(σjE), which
is disjoint from D since τ is uniquely decipherable and E and σjE are disjoint.
Finally, by definition of τ∗(X), every y ∈ τ∗(X) can be written as σkτ(x) for some
0 ≤ k < ` and x ∈ X, which can in turn be written as σkτ(σme) = σk+m`τ(e) for
some 0 ≤ m < n and e ∈ E. Since 0 ≤ k + m` < n`, we’ve shown that τ∗(X) =⊔n`−1
r=0 σrD, so X ∈ Pn`. Since C was arbitrary and τ∗(X) ∈ C ∩ Pn` ⊂ C ∩ Pn,

we’ve shown that Pn is dense.
It remains only to show that each Pn is a Gδ. We note that by compactness, for

any finite A ⊂ Z, subshift X ∈ S[A], m ∈ N, S ⊂ Am, and associated clopen set

E =
⋃
w∈S [w], X =

⊔n−1
i=0 σ

iE if and only if there exists N > m so that for every
w ∈ LN (X), there exists i so that every m-letter subword w(j) . . . w(j+m−1) has
cylinder set contained in E if and only if j ≡ i (mod n). Denote by D(m,S,N,A)
the set of all S ⊂ AN with this property. Then, we can write Pn as⋃

m,N∈N,A⊂Z,
|A|<∞,S⊂Am

{X ∈ T′ | LN (X) ∈ D(m,S,N,A)}

=
⋃

m,N∈N,A⊂Z,
|A|<∞,S⊂Am

⋃
X∈T′

LN (X)∈D(m,S,N,A)

[X,N ],

which is clearly open. Each Pn is then open and dense, so the intersection
⋂
n Pn

is a dense Gδ, and the set of regular Toeplitz subshifts in
⋂
n Pn is a dense Gδ. By
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Lemma 5.14, each such Toeplitz factors onto the universal odometer, completing
the proof.

�

Remark 5.16. In [34], Hochman showed that in fact a single conjugacy class (that
of the universal odometer) was generic in the space of transitive homeomorphisms
of the Cantor set. We remind the reader that such a result cannot hold here: by
the Curtis-Hedlund-Lyndon theorem, the conjugacy class within S of any subshift
is countable, and a countable set cannot contain a dense Gδ in T′ since T′ has no
isolated points.

5.2. Complexity for a generic subshift in T′. For increasing f, g : N → R+,
the set Sf,g of subshifts in T′ whose complexity is between f, g infinitely often is
a Gδ set by Theorem 2.10. Our main result in this section is that this set is also
dense (and therefore generic) in T′ if f and g are ‘far enough apart’ in the set of a
certain order on increasing functions.

Definition 5.17. For two increasing functions f, g : N → R+, we say that f ≺ g
if for every s, t ∈ N, there exists a constant N so that tf(n + s) < g(tn) and
f(tn) < tg(n− s) for all n > N .

Lemma 5.18. If X is a subshift with alphabet AX , ` ∈ N, and τ : AX → A`Y is
an injective map with the unique decipherability property from Theorem 5.4, then
for all n ≥ 3`,

`cX(bn/`c − 2) ≤ cτ∗(X)(n) ≤ `cX(dn/`e+ 2).

Proof. We note that any word in Ln(τ∗(X)) is a subword of a concatenation of the
words {τ(a)} ⊂ A`, and so is determined completely by a residue class modulo `
and a concatenation of less than or equal to 1 + n+1

` ≤ 2 + dn/`e words of the form
τ(a). In turn, by definition of τ(x), these are determined by some word in L(X)
with length mi ≤ 2 + dn/`e depending only on the residue class i. Therefore,

cτ∗(X)(n) ≤
`−1∑
i=0

cX(mi) ≤ `cX(dn/`e+ 2).

For the other inequality, we note that since n ≥ 3`, for every word u ∈ Ln(Y ),
there is a unique decomposition of the form pτ(v)s for v ∈ L(X) whose length m|p|
is at least n/`− 2 and depends only on |p|. Clearly for fixed |p|, different v ∈ L(X)
yield different u ∈ L(τ∗(X)), so

cτ∗(X)(n) ≥
`−1∑
i=0

cX(mi) ≥ `cX(bn/`c+ 2),

completing the proof.
�

Theorem 5.19. If f, g : N → R+ are increasing, f ≺ g, and there exists any
infinite transitive subshift X and sequence (kn) where f(kn) ≺ cX(kn) ≺ g(kn),
then the set Sf,g is residual in T′.

Proof. That Sf,g is a Gδ is implied by Theorem 2.10, so we need only show that it
is dense.
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We claim that this follows from Theorem 5.4 and Lemma 5.18. Indeed, choose
such a subshift X, (we assume without loss of generality that AX = {1, . . . , |AX |}),
sequence (kn) where f(kn) ≺ cX(kn) ≺ g(kn), and any cylinder C in T′ (with
associated alphabet AC). First, we need to find M so that there is an injective map
ρ : AX → {0, 1}M with the unique decipherability property from Theorem 5.4. For
this, simply choose K so that 2K > |AX |, define M = 2K + 2, and define ρ(i) to
be K 0s, followed by a 1, then the K-bit binary expansion of i, then another 1.
It’s easy to see that ρ has the desired decipherability, since every ρ(i) begins with
0K , and 0K appears nowhere else in concatenations of the words ρ(a) for a ∈ AX .
Then ρ∗(X) is a subshift on {0, 1}.

By Theorem 5.4, there exists ` and τ : {0, 1} → A`C so that τ∗(ρ∗(X)) ∈ C.
(Note that τ∗(ρ∗(X)) ∈ T′ since X is.) We can then define an injective map
τ ◦ ρ : AX → AM`

C , which has the unique decipherability of Theorem 5.4 since τ
and ρ do; it is clear that (τ ◦ ρ)∗(X) = τ∗(ρ∗(X)). Then, Lemma 5.18 implies that
for every n ≥ 3M`,

(7) M`cX(kn − 2) ≤ c(τ◦ρ)∗(X)(M`kn) ≤M`cX(kn + 2).

Since f(kn) ≺ cX(kn) ≺ g(kn), by definition of ≺ (for s = 2 and t = M`), for large
enough n

(8) M`cX(kn + 2) < g(M`kn) and f(M`kn) < M`cX(kn − 2).

Combining (7) and (8) yields

f(M`kn) < c(τ◦ρ)∗(X)(M`kn) < g(M`kn)

for sufficiently large n, implying that (τ ◦ ρ)∗(X) ∈ Sf,g ∩ C and completing the
proof. �

In particular, this already implies that for any countable collection of pairs
(fk, gk) satisfying Theorem 5.19, a generic subshift has complexity function en-
tering each one of these ranges infinitely often! In order to give some more explicit
statements, we need to collect some examples which are (nearly) in the literature.

Proposition 5.20. For every 1 < α < β, there exists a transitive subshift X with
alphabet {0, 1} and sequence (kn) where αkn < cX(kn) < βkn for all n.

Proof. We will make use of a class of examples from [38], each defined via an
increasing sequence (nk) of integers. For any such (nk), define a sequence

x = 0∞.10n010n110n010n210n010n110n010n3 . . . ,

where the subscripts in the exponents follow the sequence 01020103 . . . whose ith
letter is the largest j s.t. 2j divides i. Then, define X to be the closure of the orbit
of x. For each such subshift, [38] gives a formula for the word complexity in terms
an auxiliary sequence mk (there written |w(k)|) defined by the recursion

mk = 2k + 2nk +

k−1∑
j=0

2k−j−1nj .

Whenever nk ≥ mk−1 for all k (which will be true of all examples we consider here),
we can define the disjoint union of intervals R = R(nk) =

⋃
(nk,mk]. Under that

assumption, the complexity of X is proved in [38] to be

(9) cX(n) = n+ 1 + |R ∩ [1, n)|.
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We claim that (nk) can be chosen so that lim infj
cX(j)
j = 1 and lim supj

cX(j)
j = 2.

Specifically, we claim that (nk) can be chosen to satisfy
cX(nk2+1)

nk2+1
< 1 + k−1 and

cX(n(k+1)2 )

n(k+1)2
> 2−k−1 for all k. Suppose that n1, . . . , nk2 have been chosen satisfying

the hypothesis. We define any nk2+1 > k(1 +mk2), and note that by (9),

cX(nk2+1) ≤ nk2+1 + 1 +mk2 < nk2+1(1 + k−1),

verifying
cX(nk2+1)

nk2+1
< 1 + k−1. Then, define nk2+j = mk2+j−1 for 1 < j ≤ 2k + 1.

This means that R ⊇ (nk2+1,mk2+2k]. By definition, mi > 2ni−1 for all i, and
since nk2+j = mk2+j−1 for 1 < j ≤ 2k + 1, n(k+1)2 = mk2+2k > 22k−1mk2+1. By
(9),

cX(n(k+1)2) = n(k+1)2 +1+mk2+2k−nk2+1 > 2n(k+1)2−mk2+1 > n(k+1)2(2−k−1),

verifying
cX(n(k+1)2 )

n(k+1)2
< 2− k−1 and completing the induction.

Denote byX0 the subshift just defined satisfying lim infj
cX0

(j)

j = 1 and lim supj
cX0

(j)

j =

2. We now prove Theorem 5.20 for 1 < α < β < 2. By a result of Cassaigne ([13]),
cX0

(n+ 1)− cX0
(n) is bounded, i.e. there exists C so that cX0

(n+ 1)− cX0
(n) < C

for all n. Choose any N > C(β − α)−1. By definition of lim inf and lim sup, there

exist K,L > N so that
cX0

(K)

K < α and
cX0

(L)

L > β. Define J ∈ [K,L] maximal so

that
cX0

(J)

J ≤ α (meaning that
cX0

(J+1)

J+1 > α). Then

cX0(J+1) < cX0(J)+C ≤ Jα+C < (J+1)α+C < (J+1)α+N(β−α) < (J+1)β.

Therefore,
cX0

(J+1)

J+1 < β, and we already knew that
cX0

(J+1)

J+1 > α. Since N was
arbitrary and J > N , this completes the proof when 1 < α < β < 2.

For the remaining cases, we wish to take the product of X0 with a periodic orbit
with period of the form 2j to achieve larger linear complexities. However, we need
to ensure that such products retain the transitive property. Recall that X0 is the
closure of the orbit of the sequence

x = 0∞.10n010n110n010n210n010n110n010n3 . . .

Define a sequence of words v(k) as follows: v(0) = 1, and for all k, v(k + 1) =
v(k)0nkv(k). By definition of X0, every word in L(X0) is a subword of some v(k).
In addition, for every m > k, the word v(k)0nmv(k) is a subword of x, and so
|v(k)|+ nm is a return time of [v(k)] to itself, i.e. [v(k)] ∩ σ|v(k)|+nm [v(k)] 6= ∅.

We now wish to show that in the construction of X0, one can control the sequence
(nm) so that for all j, every residue class modulo 2j is achieved by infinitely many
nm. This is fairly clear, since there are infinitely many nm which are defined only
in terms of a lower bound (for m = k2 + 1 as written above). We from now on
assume without loss of generality that X0 has this property. Then, fix any j and
any u, v ∈ L(X0). There exists k so that u, v are subwords of v(k); say that u, v
appear at locations i, j respectively (i.e. [v(k)] ⊂ σi[u] ∩ σj [v]). By the above,
every |v(k)| + nm for m > k is a return time of [v(k)] to itself, and therefore for
every m, [u] ∩ σ|v(k)|+j−i+nm [v] 6= ∅. Since nm with m > k achieve every residue
class modulo 2j , the same is true for the positive integers |v(k)| + j − i + nm.

Since u, v were arbitrary, this implies that (X0, σ
2j ) is transitive, and therefore

that Xj := X0 × Pj is transitive (with respect to σ), where Pj is the orbit of the
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periodic sequence (102j−1)∞. It is clear that cPj (n) = 2jcX0
(N) for n ≥ 2j , and so

lim inf
cXj (n)

n = 2j and lim sup
cXj (n)

n = 2j+1.

Now, the proof of Theorem 5.20 proceeds exactly as above for the case 2j < α <
β < 2j+1 for any j ≥ 0. The only remaining case is where α ≤ 2j ≤ β for some

j, and this case is obvious, since we can just define β′ = α+2j

2 . Then the theorem
holds for α, β′, which implies that it trivially holds for α, β since β′ < β.

�

Proposition 5.21. For every 1 < α < β, there exists a transitive subshift X with
alphabet {0, 1} and sequence (kn) where kαn < cX(kn) < kβn for all n.

Proof. This is a consequence of Theorem A from [36], which states that for every
rational p/q > 1, there exists a Toeplitz subshift X and constants c1, c2 > 0 so that

(10) c1n
p/q < cX(n) < c2n

p/q

for all n. To derive Theorem 5.21, just take, for any 1 < α < β, some p/q ∈ (α, β),
and then (10) implies that the associated subshift X must satisfy kαn < cX(kn) < kβn
for sufficiently large n. �

Theorem 5.22. For every 1 < α < β, there exists a transitive subshift X with

alphabet {0, 1} and sequence (kn) where ek
α
n < cX(kn) < ek

β
n for all n.

Proof. This is a consequence of Theorem 3 from [14], which proves that for any

φ : R+ → R+ which is differentiable (except possibly at 0), satisfies φ(t)
log t →∞, and

has φ′(t) decreasing and bounded from above by t−β for some positive β, there exists
a minimal subshift X with log cX(n)/φ(t) → 1. For any α, β as in the theorem,
clearly φ(t) = t(α+β)/2 satisfies the above conditions, and then X guaranteed by
[14] has the desired properties.

�

Using these examples, we can give some surprising properties of generic subshifts
in T′.

Proposition 5.23. For a generic subshift X in T′, each of the following holds:

(1) For all γ > 1, there is a subsequence kn so that cX(kn)
kn

→ γ

(2) For all γ ≥ 1, there is a subsequence kn so that log cX(kn)
log kn

→ γ

(3) For all 0 < γ < 1, there is a subsequence kn so that log log cX(kn)
log kn

→ γ.

Informally, this theorem states that a generic subshift in T′ has complexity
function for which there are subsequences where it behaves like any possible lin-
ear function γn, like any possible polynomial function nγ , and like any possible
‘stretched exponential’ function en

γ

(within the restriction of zero entropy, which
we know to be generic by Theorem 5.6).

Proof. The proofs for all three items in the list are similar; we begin with the first.
It’s easily checked by definition that for any 1 < γ < δ, γn ≺ 2γ+δ

3 n ≺ γ+2δ
3 n ≺ δn.

By Proposition 5.20 (with α = 2γ+δ
3 and β = γ+2δ

3 ), there exists a subshift X with
alphabet {0, 1} and sequence (kn) so that cX(kn) ∈ [αkn, βkn] for all n, implying
that

γkn ≺ cX(kn) ≺ δkn.
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Therefore, by Theorem 5.19, Sγn,δn is generic in T′. Now, fix any α > 0 and

any k; then Sγn,(γ+k−1)n is generic in T′, meaning that
⋂
k Sγn,(γ+k−1)n is generic

in T′. But by definition, for all X ∈
⋂
k Sγn,(γ+k−1)n and for all k, there exists nk

so that γnk < cX(nk) < (γ + k−1)nk, implying that cX(kn)
kn

→ γ.

So, for each γ > 1, the set of subshifts for which there exists (k
(γ)
n ) with

cX(k(γ)n )

k
(γ)
n

→ γ is residual in T′. Since the intersection of countably many residual

sets is residual, a generic subshift in T′ in fact has such sequences for all rational
γ > 1. But this implies the existence of such sequences for all γ > 1 by a diagonal
argument.

The other two statements are proved similarly by using Propositions 5.21 and
5.22. �

Near minimal complexity, even more can be said.

Lemma 5.24. For any unbounded increasing h : N→ R+, n ≺ n+ h(n). (Here, n
refers to the function f(n) = n).

Proof. If we define f(n) = n and g(n) = n+ h(n), for any s, t, tf(n+ s) = tn+ ts
and g(tn) = tn + h(tn), and clearly for large enough n, h(tn) > ts, implying that
tf(n + s) < g(tn). Similarly, f(tn) = tn and tg(n − s) = tn − ts + th(n − s), and
clearly for large enough n, h(n−s) > s, implying that f(tn) < tg(n−s). The claim
now follows from the definition of ≺. �

The following corollary is nearly immediate.

Corollary 5.25. For any unbounded increasing h : N→ R+, Sn,n+h(n) is residual

in T′.

Proof. There is a subtlety here; the subshifts that we wish to use for the hypothesis
of Theorem 5.19 are Sturmians, where cX(n) = n + 1 for all n, and it is not
the case that n ≺ n + 1. However, for any h as in the statement, we just apply
Theorem 5.19 with f = 0.5n and g = n + h(n). Clearly 0.5n ≺ n + 1 ≺ n + h(n)
(using Lemma 5.24), and so S0.5n,n+h(n) is generic in T′.

We now just note that no periodic (finite) subshift can be in S0.5n,n+h(n) by the
Morse-Hedlund theorem, and that all infinite subshifts have cX(n) > n for all n.
Therefore, S0.5n,n+h(n) = Sn,n+h(n), and the proof is complete. �

We note that Corollary 5.25 cannot be improved, i.e. Sn,n+C is not residual
for any constant C. This is because for any X ∈ Sn,n+C , there is a subsequence
along which n ≤ cX(n) ≤ n + C, which implies that in fact cX(n) = n + D for all
large enough n (note that X is not periodic, so by the Morse-Hedlund theorem,
cX(n+ 1)− cX(n) ≥ 1 for all n). However, this implies that (for instance) S1.1n,2n

and Sn,n+C are disjoint, and so since the former is residual in T′ by Theorem 5.23,
the latter cannot be.

One more corollary here is worth noting.

Corollary 5.26. The collection U1RS of subshifts for which there are infinitely
many n with cX(n+ 1) = cX(n) + 1 is residual in T′.

Proof. We claim that S1.1n,1.2n ⊂ U1RS , and then this follows immediately from
Theorem 5.23. To see this, choose any X ∈ Uc

1RS . By definition, there exists N so
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that cX(n+ 1) ≥ cX(n) + 2 for n > N , which implies that cX(n) ≥ 2n−N for all
n. This clearly implies X /∈ S1.1n,1.2n, completing the proof. �

In fact we can use Corollary 5.26 to derive a useful substitutional structure for
generic subshifts in T′, for which we need a definition.

Definition 5.27. A subshift X has alphabet rank k if there exist alphabets An (for
n ≥ 0) and substitutions ρn : An → A∗n−1 (for n ≥ 1) so that lim inf |An| = k and
every word in L(X) is a subword of (ρ1 ◦ · · · ◦ ρn)(a) for some n and a ∈ An. The
sequence (ρn) is right proper if all ρn(a) (a ∈ An) have the same terminal letter for
all n.

Corollary 5.28. A generic subshift in T′ has alphabet rank two for a right proper
sequence (ρn).

Proof. Due to Theorem 5.7 and Corollary 5.26, it suffices to find a right proper
sequence (ρn) inducing X for every infinite minimal subshift X where cX(n +
1) − cX(n) = 1. Suppose that X is such a subshift, and define the infinite set
S = {n | cX(n+ 1)− cX(n) = 1}.

Choose any n ∈ S. Then by Corollary 2.9, there is a unique right-special word
wn ∈ Ln(X) and exactly two letters an 6= bn which can follow wn. Since every word
in Ln(X) except wn forces the following letter, we can repeatedly extend wnan to
the right as long as its terminal n letters force the next letter, which will continue
until the final n letters are exactly wn. Put another way, there exists un beginning
with an where wnun ends with wn, wnun contains no occurrences of wn except at
the beginning and end, and any occurrence of wnan in any x ∈ X is a prefix of
wnun. Define wnvn similarly using wnbn. Assume without loss of generality that
|un| ≤ |vn|. Then by the above, every x ∈ X is some biinfinite concatenation of the
words un, vn (simply mark locations of wn within x, and then every end of a wn
is an end of an un or vn). In addition, every occurrence of wn in such an x must
share its last letter with the last letter of some concatenated un or vn, which means
that the decomposition of any x into a concatenation of un and vn is unique.

We make the following claim: for every k, there exists N so that for every n ∈ S
with n > N , the associated words un, vn have lengths greater than k. Assume
for a contradiction that this is not the case, i.e. that there exists k so that for
infinitely many n ∈ S, |un| ≤ k. Recall that wnun ends with wn by definition, so
in particular, wn(i) = wn(i + |un|) for all i with 1 ≤ i, i + |un| ≤ |wn|. But then
passing to a subsequence with |un| constant and taking a limit of the associated
subsequence of (wn) yields a periodic point, a contradiction to X being infinite and
minimal. Therefore, the original claim holds.

Now, we inductively describe the sequence (ρn). First, choose any n1 ∈ S, and
define ρ1 sending 0 to un1

and 1 to vn1
. Note that un1

and vn1
both have final

letter equal to the final letter of wn1
, so ρ1(0) and ρ1(1) have the same final letter.

Now, choose n2 ∈ S so that n2 and |un2
| are greater than |vn1

|. Since wn2
un2

and
wn2

vn2
have wn2

as a suffix, we know that un2
, vn2

, and w2 share a common suffix
of length min(|un2 |, n2) ≥ |vn1 |. Finally, we note that w1 is a suffix of w2 (the suffix
of a right-special word is right-special), so either un1 or vn1 is a suffix of w2.

Therefore, both un2
and vn2

have a common suffix c ∈ {un1
, vn1
}. Since all

x ∈ X are concatenations of un2
and vn2

, we know that cun2
and cvn2

are in L(X).
This means that un2

and vn2
are concatenations of an1

and bn1
. We can therefore
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define ρ2 : {0, 1} → {0, 1}∗ so that un2
= (ρ1 ◦ ρ2)(0) and vn2

= (ρ1 ◦ ρ2)(1). Since
un2 and vn2 have common suffix c, ρ2(0) and ρ2(1) share the same final letter.

Continue in this way to define a sequence (ρk) so that for all k, unk = (ρ1 ◦ ρ2 ◦
· · · ◦ρk)(0) and ρk(0) and ρk(1) share the same final letter. Since X is minimal and
unk = (ρ1 ◦ ρ2 ◦ · · · ◦ ρk)(0) are words in L(X) of increasing length, every word in
L(X) is a subword of some (ρ1 ◦ ρ2 ◦ · · · ◦ ρk)(0). Finally, since An = {0, 1} for all
n > 0, lim inf |An| = 2.

�

An immediate corollary is that these subshifts have the minimal possible topo-
logical rank among nontrivial subshifts.

Corollary 5.29. A generic subshift in T′ has topological rank two.

Proof. By Corollary 2.5 of [22], any minimal subshift X with alphabet rank two
for a right proper sequence (ρn) has topological rank two. (Corollary 2.5 requires
the extra assumption that each ρn acts injectively, but this is implied by Theorem
3.1 of [7] since each ρn acts on an alphabet of size 2 and X contains no periodic
points by minimality.) �

Corollary 5.29 immediately implies that the automorphism group of a generic
subshift in T′ is generated by the shift.

Corollary 5.30. A generic subshift in T′ has automorphism group consisting of
only powers of the shift.

Proof. [17, Thm 3.1] and [18, Sec. 7] imply that topological rank two and mini-
mality imply that the automorphism group is generated by the shift, so this is an
immediate consequence of Theorem 5.7 and Corollary 5.29.

�

5.3. Orbit equivalence, dimension groups, and mapping class groups for
generic subshifts in T′. We now move on to characterizing dimension groups for
generic subshifts in T′, which will in turn yield results about orbit equivalence and
mapping class groups.

5.3.1. Orbit equivalence in T′. The goal of this subsection is to prove the following
theorem.

Theorem 5.31. The set of minimal subshifts (X,σ) whose dimension group
(Gσ,G+

σ , [1]) is isomorphic (as ordered unital groups) to (Q,Q+, 1) is residual in
T′.

Recall systems (X,T ) and (Y, S) are orbit equivalent if there is a homeomorphism
φ : X → Y such that φ takes T -orbits onto S-orbits; in other words, for all x ∈ X,
{φ(Tn(x))}n∈Z = {Sn(φ(x))}n∈Z. If two infinite minimal systems (X,T ) and (Y, S)
are orbit equivalent then there are well-defined maps m : X → Z, n : Y → Z such
that φT (x) = Sn(x)φ(x) and φTm(x)(x) = Sφ(x) for all x ∈ X, and if both m,n
have at most one point of discontinuity then we say (X,T ) and (Y, S) are strong
orbit equivalent. For more background on these notions we refer the reader to [28].

In [28] it is proved that two Cantor minimal systems are strong orbit equivalent
if and only if their associated ordered unital dimension groups are isomorphic (as
unital ordered groups). Since the dimension group of the universal odometer is
(Q,Q+, 1), Theorem 5.31 then implies the following.
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Corollary 5.32. The strong orbit equivalence class of the universal odometer is
residual in T′.

Note that the universal odometer is not expansive and so does not actually
belong to S.

Before beginning, we briefly outline the proof of Theorem 5.31. The main step
is to show that the set of uniquely ergodic subshifts in T′ whose invariant measure
takes only rational values on clopen subsets is generic. This implies that for a
generic subshift, the state on the dimension group induced by the unique invariant
measure has its image contained in the rationals. For a uniquely ergodic system,
the kernel of the unique state is precisely the subgroup of infinitesimals. Thus to
finish the proof, we show that generically, the image of the state map is all of Q,
and that the subgroup of infinitesimals is trivial; Theorem 5.31 then follows.

Throughout this section, we will use the following convention: if X is a uniquely
ergodic subshift, we will denote by µX its unique invariant probability measure.
We begin by proving a somewhat technical condition for a generic class of subshifts
in T′.

Definition 5.33. For any uniquely ergodic subshift X and any v, w ∈ L(X), the
discrepancy of w in v is D(w, v) := |v|w−|v|µX([w]), where |v|w denotes the number
of occurrences of w in v.

Definition 5.34. For any uniquely ergodic subshift X and w ∈ L(X), we say X is
balanced for w if there exists a constant Cw so that for all v ∈ L(X), |D(w, v)| < Cw.
We say that X is balanced for factors (see [5]) if for all w ∈ L(X), X is balanced
for w.

We recall that UE denotes the set of uniquely ergodic subshifts. Define UERB
to be the set of subshifts X ∈ UE such that µX([w]) is rational for all words
w ∈ L(X) and X is balanced for factors.

Theorem 5.35. The set UERB is residual in T′.

Proof. For all m, we define the set UERBm of subshifts X such that X is uniquely
ergodic, µX([w]) is rational for all m-letter words w, and X is balanced for all
m-letter words. We will prove that for every m, UERBm is the intersection of an
open dense set with UE; since UERB =

⋂
UERBm and since UE is generic in

T′ by Corollary 5.12, this completes the proof.
Choose any cylinder C in T′ and any m ∈ N. Clearly there exists m′ ≥ m so

that C has a subcylinder C ′ (possibly equal to C) of the form [X,m′] for some
X. Define τ as in Theorem 5.4. By Theorem 5.5, there is a subcylinder D so that
D ⊂ τ∗({0, 1}Z) ⊂ C ′ ⊂ C. We claim that D ∩UE ⊂ UERBm′ ⊂ UERBm.

To see this, we recall that in the definition of τ , τ(0), τ(1) ∈ A` are defined
via the words corresponding to paths KKK ′K ′K ′ and KK ′KK ′K ′ for cycles K,
K ′ in GX,m′+1 which begin and end at the same vertex w. Define u, u′ to be the
(`+m′)-letter words corresponding to these paths; then τ(0), τ(1) are obtained by
removing the m′-letter suffix w from u, u′ respectively.

We now choose any X ∈ UE ∩ D and any v ∈ Lm′(X) with v 6= w. Clearly
KKK ′K ′K ′ and KK ′KK ′K ′ visit v the same number of times, so |u|v = |u′|v;
denote their common value by Nv. Since u, u′ begin and end with w, for any
t ∈ {0, 1}k we have |τ(t)w|v = |t|Nv.
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By definition, since X ∈ D we have X = τ∗(Y ) for some subshift Y on {0, 1}.
So, for any x ∈ τ(Y ) ⊂ X and any n ∈ N, x([−n`, n`+m′)) is of the form τ(tn)w
for some word tn ∈ {0, 1}2n, and hence

|x([−n`, n`+m′))|v
2n`+m′

=
2nNv

2n`+m′
n→∞−→ Nv

`
.

By the pointwise ergodic theorem, µX([v]) = Nv/` ∈ Q, and µX([w]) = 1 −∑
v 6=w µX([v]) ∈ Q, so indeed the measures of all X-cylinder sets of m′-letter words

are rational.
We note that any word q ∈ L(τ∗(X)) can be written as q = pτ(t)s for some

u ∈ L(X), p a proper suffix of some τ(a), and s a proper prefix of some τ(b) (for
a, b ∈ {0, 1}). In particular, |p|, |s| < `, so |q| ∈ [|t|`, (|t|+ 2)`). Again, choose any
v ∈ Lm′(X) with v 6= w. The number of occurrences of v in τ(t)w is exactly |t|Nv,
so

|t|Nv −m′ ≤ |q|v ≤ |t|Nv + 2`.

Since µX([v]) = Nv/` and |q| ∈ [|t|`, (|t|+ 2)`), D(v, q) = |q|v − |q|Nv` satisfies

−2Nv −m′ < D(v, q) ≤ 2`.

Since this interval is independent of q, X is balanced for v. Finally, we note that
|q|w = |q| −m′ + 1−

∑
v |q|v and µX([w]) = 1−

∑
v µX([v]). Therefore,

D(w, q) = |q|w − |q|µX([w]) = |q| −m′ + 1−
∑
v

|q|v − |q|+
∑
v

|q|µX([v])

= −m′ + 1−
∑
v

D(v, q),

and since all D(v, q) have bounds independent of q, D(w, q) does as well, implying
that X is balanced for w and so for all m′-letter words.

Combining all of this yields that X ∈ UERBm′ , and since X ∈ UE ∩ D was
arbitrary, we have UE ∩D ⊂ UERBm′ ⊂ UERBm. Since D is a subcylinder of
C and C was arbitrary, this completes the proof that UERBm is the intersection
of UE with an open dense set, and therefore the entire proof.

�

For a minimal Cantor system (X,T ), we define the infinitesimal subgroup Inf(GT ) ⊂
GT by

Inf(GT ) = {[f ] ∈ GT |
∫
f dµ = 0 for all T−invariant Borel probability measures µ}.

Any T -invariant Borel probability measure µ induces a state, i.e. an order-
preserving homomorphism τµ : (GT ,G+

T , [1])→ (R,R+, 1) taking [1] to 1, defined by
τµ([f ]) =

∫
X
f dµ.

If (X,T ) is a uniquely ergodic minimal Cantor system with T -invariant proba-
bility measure µX then there is an exact sequence

0→ Inf(GT ) −→ GT
τµX−→ R→ 0.

It is straightforward to check that the image of τµX in R is the subgroup generated
by {µX(W ) |W is clopen in X}.

Theorem 5.36. The set of uniquely ergodic subshifts for which Image(τµX ) = Q
is residual in T′.
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Proof. By Theorem 5.35, the set of uniquely ergodic subshifts X for which the
image of τµX is contained in Q is generic in T′. To obtain the equality, first note
that if (X,T ) is any uniquely ergodic minimal Cantor system, then the image of
τµX contains the (additive) group of continuous eigenvalues of (X,T ) (see [15, Prop.
11] for a proof of this). It follows from Theorem 5.15 that the set of subshifts whose
group of continuous eigenvalues contain Q is generic in T′, so this completes the
proof. �

Theorem 5.37. The set of minimal subshifts whose infinitesimal subgroup is trivial
is residual in T′.

Proof. We claim that any minimal subshift in UERB has no nontrivial infinites-
imals; together with Theorem 5.35, this will complete the proof. Consider any
X ∈ UERB with unique invariant measure µX . Since X is balanced for factors,
for each w ∈ Ln(X), there exists Cw so that for every v ∈ L(X), |D(w, v)| ≤ Cw.

Choose any function f ∈ C(X,Z) with
∫
f dµX = 0. Clearly there exists n

so that f can be written as
∑
w∈Ln(X) αwχ[w] where

∑
αwµX([w]) = 0. For any

x ∈ X and N , denote v = x([0, N + n)). Then,

(11)

N−1∑
i=0

f(σix) =
∑

w∈Ln(X)

αw|v|w.

Therefore,
(12)∣∣∣∣∣∣

∑
w∈Ln(X)

αw|v|w −
∑

w∈Ln(X)

αw|v|µX([w])

∣∣∣∣∣∣ ≤
∑

w∈Ln(X)

|αwD(w, v)| ≤
∑
w

Cw|αw|.

Finally, since
∫
f dµX = 0,

(13)
∑

w∈Ln(X)

αw|v|µX([w]) = |v|
∫
f dµX = 0.

Combining (11)-(13) yields ∣∣∣∣∣
N−1∑
i=0

f(σix)

∣∣∣∣∣ ≤∑
w

Cw|αw|.

Since the right-hand side is independent of x and N , by Gottschalk-Hedlund ([30]),
f is a coboundary. Since f ∈ C(X,Z) was arbitrary with integral 0, the proof is
complete. �

We can now prove Theorem 5.31.

Proof of Theorem 5.31. By Corollary 5.12, the set of uniquely ergodic minimal sub-
shifts is residual in T′. Theorem 5.37 implies the set of such systems which have
trivial infinitesimal subgroup is residual in T′ as well. Then the intersection of
these two residual sets is residual, and for any system in this intersection, the triple
(Gσ,G+

σ , [1]) is isomorphic (as a unital ordered group) to its image under τµX , which
by Theorem 5.36 is generically (Q,Q+, 1). �
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5.3.2. Mapping class groups in T′. We finish this section with an analysis of the
mapping class group M(σX) of a generic subshift X in T′. Given two systems
(X,T ) and (Y, S), recall that a flow equivalence is an orientation preserving home-
omorphism between their suspensions φ : ΣTX → ΣSY . If a flow equivalence exists
between two systems, then their mapping class groups are isomorphic (see [45] for
details).

By Corollary 5.30, the automorphism group of a generic subshift in T′ is as small
as possible, i.e. is generated by the shift map. We’ll prove that the analogous result
holds for mapping class groups: namely, that the mapping class group of generic
subshift in T′ is trivial.

Remark 5.38. There is no subshift (X,σ) whose flow equivalence class is generic
in T′ since, as a consequence of the Parry-Sullivan Theorem (see [9, Sec. 4]), the
flow equivalence class within S of a subshift is always countable.

Theorem 5.39. The collection of subshifts whose mapping class group is trivial is
residual in T′.

Proof. Let C denote set of uniquely ergodic minimal subshifts (X,σX) in T′ whose
dimension group is isomorphic (as a group) to Q. By Theorem 5.31 this set is generic
in T′, so it suffices to show that any subshift (X,σX) in C has trivial mapping
class group. In [45, Cor. 4.23] it is shown that if (X,σX) is a uniquely ergodic
minimal subshift such that Inf(GσX ) = {id}, then either (X,σX) is flow equivalent
to a subshift arising from a primitive substitution, or M(σX) is isomorphic to
Aut(X,σX)/〈σX〉. By Theorem 5.37 we know that the set of subshifts having
trivial infinitesimal subgroup is generic in T′. Moreover, by Corollary 5.30 the set
of subshifts (X,σX) for which Aut(X,σX)/〈σX〉 is trivial is also generic in T′, so
it suffices to show that any subshift (X,σX) in the class C is not flow equivalent
to a substitution.

If two systems (X,T ) and (Y, S) are flow equivalent then there is an isomorphism
between their coinvariant groups; that is, GT is isomorphic (as an abelian group)
to GS . Thus given Theorem 5.31, it is enough to show that if (X,σX) is a subshift
coming from a primitive aperiodic substitution, then GσX is not isomorphic to
Q. One can see this for example using Bratteli diagrams: by [21, Prop. 20], if
(X,σX) is a subshift associated to a substitution then (X,σX) is conjugate to the
Vershik map on some stationary Bratteli diagram4. In particular, if (X,σX) is
a subshift defined by a primitive substitution, then there exists an r × r integral
matrix A such that GσX is isomorphic to the direct limit of the stationary system

Zr x 7→Ax−→ Zr x 7→Ax−→ Zr −→ · · · . This direct limit group is isomorphic to the direct

limit of a stationary system Zr x7→A
′x−→ Zr x 7→A

′x−→ Zr −→ · · · where A′ is a nonsingular
integral matrix. But A′ is invertible over Z[ 1

det(A′) ], so the latter direct limit is

isomorphic to a subgroup of Z[ 1
det(A′) ]r, and such a subgroup can not be isomorphic

to Q. �

4Alternatively one could note that GσX is isomorphic to the Cech cohomology group

Ȟ1(ΣσXX,Z) which, in the case (X,σX) comes from a primitive substitution, can be computed

using theory from tiling spaces; see [3].
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6. The space TT′ of infinite totally transitive systems

Continuing with our study of genericity in more dynamically interesting sub-
spaces, we consider in this last section the space of totally transitive subshifts
contained in S. As was done previously, we need to remove all isolated points in S,
but here that is particularly simple; the only subshifts in TT ∩NMC are systems
consisting of a single point (and hence defined by a single constant sequence). We
then make the following definition.

Definition 6.1. Denote by TT′ the subspace of infinite totally transitive subshifts
in S.

It turns out that each Xn in the sequence used to show that T′ was not closed
was in fact also totally transitive, so the same sequence of systems shows that TT′

is not closed in S either.
For every k, a proof virtually identical to that of Lemma 5.2 shows that the set

of subshifts (X,σ) for which (X,σk) is transitive is a Gδ. Therefore, the space TT′

is a Gδ in S, and hence also in TT′. Thus again, any results on genericity in TT′

may be determined in TT′, and we phrase all our results here in terms of TT′.

Lemma 6.2. TT′ is a perfect subset of S.

Proof. By definition, TT′ is closed, so we need only show that it has no isolated
points.

The proof of this is again similar to that of Theorem 4.2. We claim that if the
shift X in that proof is assumed totally transitive, then the shift Y constructed
to share an arbitrary cylinder [X,n] is also totally transitive. Recall that Y was
constructed by forbidding a single path fPg, but allowing all fPKng for a fixed
cycle K, and that it was shown in Lemma 5.3 that Y is a transitive shift of finite
type. Since [X,n] contains a totally transitive infinite subshift, its Rauzy graph
GX,n is primitive and nontrivial, so we can find cycles K ′,K ′′ which both contain
fPg and have relatively prime lengths. We can assume without loss of generality
that K ′,K ′′ end with fPg.

Suppose the numbers of occurrences of fPg in K ′,K ′′ are m′,m′′ > 0 respec-
tively. Then, for every i > 0, GX,n contains cycles K ′i,K

′′
i obtained by replac-

ing each fPg in K ′,K ′′ respectively by fPKig. Then |K ′i| = |K ′| + im′|K| and
|K ′′i | = |K ′′|+ im′′|K|. Since |K ′| and |K ′′| were relatively prime, for large enough
j, |K ′jm′′ | and |K ′′jm′ | are also relatively prime (since they come from adding the

same large integer jm′m′′|K| to both |K ′| and |K ′′|.)
Therefore, we have two cycles L = K ′jm′′ and L′ = K ′′jm′ of relatively prime

length in GX,n which do not contain fPg and which end with g. Since L and L′

end with g, each yields a biinfinite path (under repeated traversal) which does not
contain fPg and so corresponds to a periodic point of Y . Then Y is a transitive
shift of finite type with periodic points of relatively prime least periods, and so it
is mixing and thereby totally transitive.

So, again all nonempty cylinders in TT′ have at least two subshifts, so no subshift
in TT′ is isolated. �

One useful observation is that the topologically mixing subshifts are dense in
TT′.
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Lemma 6.3. For any nonempty cylinder C in TT′, the subshift S(C) ∈ C is an
infinite mixing shift of finite type.

Proof. This is fairly clear; by definition, C must be equal to the intersection of [X,n]
with TT′ for some subshift X ∈ TT′. Since this cylinder must intersect TT′, we
may assume that X itself is infinite and totally transitive. The Rauzy graph GX,n
must then be nontrivial, irreducible, and aperiodic, therefore primitive. Then, by
definition, GX,n is the graph defining the nth higher block presentation (see [37,
Sec. 1.4]) of S(C), so this presentation is infinite and mixing. Since the higher block
presentation is topologically conjugate to S(C), it follows S(C) must be infinite and
mixing as well. �

Our main tool for proving that various sets/properties are dense in TT′ is the
following theorem, which plays the role that Theorem 5.4 did in T. The result
closely mimics that of [34, Thm. 6.4], and Hochman alludes to (but does not
prove) the version here.

Theorem 6.4. For any subshift X ∈ TT′ which has zero entropy and no periodic
points, the conjugacy class of X is dense in TT′.

Proof. Choose any such X and any nonempty cylinder C in TT′. By Lemma 6.3,
there is an infinite mixing shift of finite type Y = S(C) and n so that C = [Y, n]. We
note that Krieger’s embedding theorem would immediately allow us to construct
an embedding of X into Y , which yields a subshift of Y conjugate to X. However,
this shift might not contain all words in Ln(Y ) in its language, and so might not be
in C. To obviate this issue, we will construct a mixing shift of finite type subsystem
of Y where every point contains all words in Ln(Y ).

By primitivity of GY,n, there exist cycles K,K ′ with relatively prime lengths
which each contain all edges of GY,n. Without loss of generality, we can assume
that K,K ′ start and end at the same vertex v. Define a labeled directed graph G
consisting of copies of the cycles K, K ′ which share the vertex v and no others,
and where each edge is labeled by the initial letter of the word in Ln(Y ) it corre-
sponds to. Define a subshift Z consisting of all labels of biinfinite walks on G; by
definition, Z is irreducible and sofic (see [37] for a definition of sofic subshift). It is
clear by definition that Z consists of all sequences in Y corresponding to biinfinite
concatenations (in any order) of K,K ′, so Z has periodic points of relatively prime
periods and is therefore mixing.

Since K,K ′ each contained all edges of GY,n, every z ∈ Z contains all words in
Ln(Y ) as subwords. Moreover, since Z is mixing sofic, it has a synchronizing word
w and there exist words u, v with lengths differing by 1 so that wuw,wvw ∈ L(Z).
Then, the set of all configurations of concatenations of wu,wv (in any order) is a
subshift Z ′ of Z (this uses the synchronizing property of w; again, see [37] for a
definition), and it’s easy to see that it’s a shift of finite type. It is also mixing, since
it contains periodic sequences (wu)∞ and (wv)∞ with periods differing by 1 (and
therefore relatively prime).

By Krieger’s embedding theorem [37, Cor. 10.1.9], there is an embedding from
X to Z ′ (as a mixing shift of finite type, Z ′ automatically has positive entropy,
so h(Z ′) > h(X)). Now, Z ′ contains a shift conjugate to X, which is in C by
Lemma 2.6, completing the proof. �
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This theorem is quite powerful, showing that any set defined by a conjugacy-
invariant dynamical property which is possessed by some zero entropy aperiodic
totally transitive subshift is dense in TT′. In particular, any such property/set
that we have already shown to be a Gδ is automatically generic, so we have the
following.

Theorem 6.5. The set of zero entropy, minimal, uniquely ergodic subshifts with
topological rank two is residual in TT′.

(Sturmian subshifts are examples showing that these properties satisfy the hy-
pothesis of Theorem 6.4.)

We emphasize that Toeplitz subshifts are no longer generic in TT′ (as was the
case for T), since no Toeplitz subshift in S′ is totally transitive.

Unlike the transitive case, we can show that topologically mixing is generic in
TT′.

Theorem 6.6. The set TM of topologically mixing subshifts is residual in TT′.

Proof. Density is an immediate corollary of Theorem 6.4 ([31] gives examples of
topologically mixing subshifts with zero entropy), so we need only show that the
mixing subshifts form a Gδ in S (and thereby TT′). To see this, we note that for
any finite A ⊂ Z, a subshift X ∈ S[A] is topologically mixing if and only if, for all
n, there exists k so that, for all v, w ∈ Ln(X), there exists u ∈ Lk(X) for which
vuw ∈ L2n+k(X). An equivalent statement (since languages are factorial) is: for
all n, there exists k so that, for all v, w ∈ An which are subwords of some words in
L2n+k(X), there exists u ∈ Ak for which vuw ∈ L2n+k(X).

For any A, n, k, denote by M(A, n, k) the set of all S ⊂ A2n+k with this property.
Then, we can write

TM =
⋂
n∈N

⋃
k∈N,

A⊂Z,|A|<∞

{X ∈ S | L2n+k(X) ∈M(A, n, k)}

=
⋂
n∈N

⋃
k∈N,

A⊂Z,|A|<∞

⋃
X∈S

L2n+k(X)∈M(A,n,k)

[X, 2n+ k],

which is clearly a Gδ, completing the proof. �

6.1. Measure-theoretic properties for generic subshifts in TT′. Theorem 6.5
shows that generic subshifts in TT′ are uniquely ergodic, and we can prove that
properties of the unique measure for a generic subshift mimic those in the simplex
of invariant measures. There is one subtlety; since the space of (shift-invariant)
measures on ZZ is not complete in the weak topology (and the issue persists even
for measures supported on finite-alphabet full shifts), we must restrict to a fixed
ambient finite-alphabet full shift in our statements. We first need a fact about
genericity in the measure-theoretic setting.

Lemma 6.7. For any finite A ⊂ Z with associated space M(A) of shift-invariant
probability measures on AZ endowed with the weak topology, the set of weak mixing
measures with zero entropy is residual in M(A).

Proof. The fact that weak mixing measures are generic in M(A) comes from [40]
and [41]; though the proof in [41] is stated for measures on RZ, it rests on results
from [40] which were proved for a finite alphabet.
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To see that zero entropy measures are generic, we first note that [47] implies that
the set of measures supported on a finite subshift (i.e. a finite union of periodic
orbits) is dense in M(A). Finally, since the shift on AZ is expansive, the entropy
map µ 7→ h(µ) is upper semi-continuous, meaning that for all n, the set of shift-
invariant measures on AZ with measure-theoretic entropy less than n−1 is open.
Taking the intersection shows that the zero entropy measures form a Gδ set, and
since all measures with finite support are zero entropy, they are dense as well,
completing the proof.

�

We can now state our main measure-theoretic result. Note that our proof is
similar to that in [34], but the result does not directly imply ours due to the
differences in settings.

Theorem 6.8. For any finite A ⊂ Z with |A| > 1 and any nonempty set G of
ergodic shift-invariant probability measures which is closed under measure-theoretic
isomorphisms on AZ and which is a dense Gδ in the space M(A) of invariant
measures on AZ, a generic subshift in S[A] ∩TT′ is uniquely ergodic with unique
measure in G.

Proof. Fix any A, G as in the theorem. If UE(A) is the set of uniquely ergodic
subshifts contained in AZ and E(A) is the set of ergodic shift-invariant probability
measures on AZ, then we claim that the function f : UE(A) → E(A) defined by
X 7→ µX is continuous.

To see this, consider any X ∈ UE(A) and any k, ε > 0. By definition of unique
ergodicity, for every u ∈ Lk(X), there existsNu so that for everyM > Nu, every v ∈
LM (X) contains between M(µX([u])−ε/2) and M(µX([u])+ε/2) occurrences of u.
Then, if we define N = maxuNu and take any Y ∈ UE(A)∩ [X,N ], then for every
u ∈ Lk(X), every word in LN (Y ) = LN (X) contains between N(µX([u])−ε/2) and
N(µX([u]) + ε/2) occurrences of u. If N was assumed large enough, this implies
that for each such u and every y ∈ Y , the frequency of occurrences of u in y is
between µX([u]) − ε and µX([u]) + ε. If we define ν = f(Y ), then by the ergodic
theorem, |µX([u]) − ν([u])| < ε for all u ∈ Lk(X). Since this is true for f(Y ) for
all Y ∈ UE(A) ∩ [X,N ] and since k, ε were arbitrary, we’ve proven the desired
continuity.

Therefore, f−1(G) is a Gδ subset of UE(A) in the induced topology, i.e. the
intersection of UE(A) with a Gδ set in S. We now wish to show that f−1(G) is
dense in S[A] ∩TT′.

Since G is a dense Gδ and the set of weak mixing measures with zero entropy
is generic in M(A) by Lemma 6.7, G contains a weak mixing measure µ with
zero entropy. By the Jewett-Krieger Theorem, there is a uniquely ergodic subshift
X ∈ S[A] whose unique ergodic measure µX is measure-theoretically isomorphic
to µ, so µX ∈ G. Since µ was weak mixing with zero entropy, µX is also, and
so X has zero (topological) entropy, no periodic points, and is totally transitive.
So, by Theorem 6.4, the conjugacy class C(X) of X is dense in TT′. Therefore,
C(X) ∩ S[A] is dense in S[A] ∩ TT′. Since f(X) = µX ∈ G and every topo-
logical conjugacy between uniquely ergodic subshifts induces a measure-theoretic
isomorphism, f(C(X) ∩ S[A]) ⊂ G, and hence f−1(G) is dense in S[A] ∩TT′.

Therefore, f−1(G) is the intersection of UE(A) with a dense Gδ set in TT′.
Finally, we note that UE is generic in TT′ by Theorem 6.5, UE(A) = UE ∩
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S[A], and S[A] is clopen in S. This implies that f−1(G) is generic in S[A] ∩TT′,
completing the proof.

�

Theorem 6.9. The set WM of uniquely ergodic subshifts with weak mixing unique
measure is residual in TT′.

Proof. For any alphabet A with |A| > 1, the set G(A) of weakly mixing measures
on AZ satisfies the hypotheses of Theorem 6.8 (by Lemma 6.7), so by Theorem 6.8,
WM ∩ S[A] is residual in TT′ ∩ S[A]. (We need not consider singleton A since
the only such subshifts are isolated in S and so not in TT′.) But then by unioning
over all finite A ⊂ Z, we see that

WM =
⋃
A

WM ∩ S[A] is residual in
⋃
A

TT′ ∩ S[A] = TT′.

�

We now show that the existence of a rigidity sequence (a sequence {nk} is a
rigidity sequence for a shift-invariant measure µ if µ(A4σnkA) → 0 for all mea-
surable A) is also generic. We are not aware of a reference for this property being
generic in the space of shift-invariant measures on a finite alphabet, so we give a
self-contained proof of this fact.

Theorem 6.10. The set of uniquely ergodic subshifts in S with a rigidity sequence
is residual in TT′.

Proof. Define R to be the set of uniquely ergodic subshifts in S with a rigidity
sequence. Clearly R is conjugacy-invariant, and there exists a totally transitive
uniquely ergodic subshift with zero entropy, no periodic points, and a rigidity se-
quence (e.g. any Sturmian shift), so by Theorem 6.4, R is dense in TT′. It remains
to show that R is a Gδ in S (and therefore in TT′ for the induced topology).

We first claim that a uniquely ergodic subshift X has a rigidity sequence if and
only if the following holds: for all n and ε, there exist M,N so that for every word
v ∈ LN (X), the proportion of locations i where the same n-letter word appears at
locations i and i+M is greater than 1− ε.

For the forward direction, first note that if X ∈ UE ∩ S[A] and (nk) is a rigid-
ity sequence for µX , then for any n, ε, there exists k so that for each u ∈ An,
µX([u]4σnk [u]) < ε

2|A|n . Define M = nk. Then µX
(⋃

u∈An([u] ∩ σM [u])
)
>

1 − |A|n ε
2|A|n = 1 − ε/2. Then, by unique ergodicity, there exists N so that every

v ∈ LN (X) has proportion at least 1− ε of locations in
⋃
u∈An([u] ∩ σM [u]).

For the reverse direction, assume that for all n, ε, there exist M,N as described.
For each k, define ε = 1

k|A|k , define M,N associated to k, ε, and take nk = M .

Then every word v ∈ LN (X) has proportion at least 1−ε of locations i where i and
i + nk contain the same n-letter word. For every x ∈ X, x is a concatenation of
words in LN (X), and so the proportion of locations in x with the same property is
at least 1−ε. Then by the ergodic theorem, µX

(⋃
u∈An([u] ∩ σnk [u])

)
> 1−ε. This

implies that for every u ∈ An, µX([u] ∩ σnk [u]) > µX([u]) − ε = µX([u]) − 1
k|A|k .

Now, define P (u, k′) to be the set of all u′ ∈ Ak′ with u as a prefix. Then for any
k′ > k,

µX([u] ∩ σnk′ [u]) ≥
∑

u′∈P (u,k′)

µX([u′] ∩ σnk′ [u′])
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>
∑

u′∈P (u,k′)

µX([u′])− 1

k′|A|k′
= µX([u])− 1

k′|A|k
,

where the last equation uses the definition of P (u, k′) and the fact that |P (u, k′)| =
|A|k′−k. So, µX([u]∩σnk [u])→ µX([u]) as k →∞. Since u was arbitrary and since
cylinder sets generate the Borel σ-algebra, (nk) is a rigidity sequence.

Finally, for any k, ε,N,M and finite A ⊂ Z, we define R(A, n, ε,M,N) to be the
set of subsets S ⊂ AN where for each v ∈ S, the proportion of locations i where
the same n-letter word appears at locations i and i+M is greater than 1− ε. Then
by the above argument, we can write

R =
⋂

m,n∈N

⋃
M,N∈N

A⊂Z,|A|<∞

{X ∈ UE | LN (X) ∈ R(A, n,m−1,M,N)} =

UE ∩
⋂

m,n∈N

⋃
M,N∈N

A⊂Z,|A|<∞

⋃
X∈S

LN (X)∈R(A,n,m−1,M,N)

[X,N ].

Since UE was already known to be a Gδ, this shows that R is a Gδ, completing
the proof. �

6.2. Complexity for generic subshifts in TT′. Much as in the transitive case,
we will be able to show that in some sense all achievable complexity growth rates
are realized along subsequences for a generic subshift in TT′. The proofs will be
simpler, as instead of the somewhat complicated Theorem 5.4, we can just use
Theorem 6.4 (along with Theorem 2.10).

Definition 6.11. For two increasing functions f, g : N→ R+, we say that f <s g
if for every t ∈ N, there exists a constant N so that f(n+ t) < g(n) for all n > N .

We note that this a weaker notion of inequality than ≺ defined in Section 5.2.
The following is an easy consequence of the Curtis-Hedlund-Lyndon theorem.

Lemma 6.12. If X and Y are conjugate subshifts, then there exists t ∈ N so that
cX(n− t) < cY (n) < cX(n+ t) for all n.

Recall for functions f, g : N → R+ we let Sf,g denote the collection of subshifts
X for which f(n) ≤ cX(n) ≤ g(n) for infinitely many n.

Theorem 6.13. Suppose f, g : N→ N are increasing and f <s g. Suppose further
that there exists a totally transitive zero entropy subshift X without periodic points
and a sequence (kn) where f(kn) <s ckn(X) <s g(kn). Then the set Sf,g defined in

Theorem 2.10 is residual in TT′.

Proof. That Sf,g is a Gδ is implied by Theorem 2.10, so we need only show that it
is dense.

We claim that this follows from Theorem 6.4 and Lemma 6.12. Indeed, choose a
subshift X and sequence (kn) where f(kn) <s cX(kn) <s g(kn), and any cylinder C
in TT′. By Theorem 6.4, there exists Y ∈ C conjugate to X, and by Lemma 6.12,
there exists t ∈ N so that for all n,

(14) cX(kn − t) ≤ cY (kn) ≤ cX(kn + t).

We note that by the definition of <s, for large enough n,

(15) cX(kn + t) < g(kn).
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Similarly, for large enough n,

(16) f(kn) < cX(kn − t).

Combining (14)-(16) yields

f(kn) < cY (kn) < g(kn)

for sufficiently large n, implying that Y ∈ Sf,g and completing the proof. �

We do not have a proof of a version of Theorem 5.23 for totally transitive sub-
shifts, since most examples of subshifts with complexity in certain regimes are
Toeplitz or come from block concatenation constructions and are therefore not nec-
essarily totally transitive. We strongly suspect that such a theorem does hold, but
do not have a proof.

The following, however, is proven exactly as in the transitive case (since Sturmian
subshifts are totally transitive).

Corollary 6.14. For any unbounded increasing h : N→ R+, Sn,n+h(n) is residual

in TT′.

Just as for Corollary 5.25, this result cannot be improved: as before, Sn,n+C and
S1.1n,2n are disjoint, and the Chacon shift is an example of a zero entropy aperiodic

totally transitive shift in S1.1n,2n. So, by Theorem 6.13, S1.1n,2n is generic in TT′,
so Sn,n+C cannot be.

Corollary 6.14 has an interesting consequence. Ferenczi in [25] asked whether
some Chacon-type examples he constructed were the subshifts of minimal com-
plexity which support weak mixing measures. In the sense of complexity along a
subsequence, our results show that the only restriction is that cX(n)− n→∞.

Corollary 6.15. For any unbounded increasing f : N → R+, the set of subshifts
X which are uniquely ergodic with weak mixing invariant measure and for which
there exist infinitely many n with cX(n) < n+ f(n) is residual in TT′.

Proof. This is an immediate corollary of Theorem 6.9 and Corollary 6.14. �

Finally, the following is proved exactly as in the transitive case.

Corollary 6.16. The collection U1RS of subshifts for which there are infinitely
many n with cX(n+ 1) = cX(n) + 1 is residual in TT′.

This yields the following corollaries, again exactly as in the transitive case.

Corollary 6.17. A generic subshift in TT′ has alphabet rank two for a right proper
sequence of substitutions, and therefore has topological rank two.

6.3. Dimension groups, infinitesimals, and orbit equivalence in TT′. The
biggest difference in the (generically unique) invariant measure for subshifts in TT′

versus T′ is that it is no longer the case that measures of clopen sets are generically
in Q.

Theorem 6.18. For every n ∈ N and x ∈ (0, 1), the set M(n, x) of uniquely ergodic
subshifts X for which there is S ⊂ Ln(X) with µX

(⋃
w∈S [w]

)
= x is nowhere dense

in TT′.
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Proof. Consider any nonempty cylinder C in TT′, n ∈ N, and x ∈ (0, 1). We will
show that M(n, x) is not dense in C.

There exists N and infinite totally transitive X so that C = [X,N ]. We will
assume without loss of generality that N = n (by setting each equal to the larger).
Completing the proof in this case completes the general proof, since [X,N ] ⊂ [X,n]
if n > N , and since M(n, x) ⊂ M(N, x) if n < N . Since X is totally transitive,
GX,n is nontrivial and primitive.

Therefore, we can find cycles K,K ′ in GX,n which contain all edges of GX,n,
and which have lengths L,L′ which are relatively prime, where L′ < L, and where
Lx /∈ N. Then for any S ⊂ An, the proportion of visits to edges corresponding to
S along K is of the form i

L for some i. Choose M relatively prime to L′ so that

|x− i
L | > M−1 for every i ∈ N.

Define K ′′ = KM (where KM denotes an M -fold traversal of K), and define the
subshift Z consisting of all sequences in Y corresponding to biinfinite concatenations
(in any order) of K ′,K ′′ where K ′ does not appear consecutively. Since the lengths
L′,ML of K ′,K ′′ are relatively prime, just as in the proof of Theorem 6.4, Z is a
mixing sofic shift. Choose any S ⊂ Ln(X), and denote the proportions of visits of
edges corresponding to S along K ′ and K ′′ by t and i

L respectively.
Then for any measure µ on Z and µ-generic z ∈ Z, the limiting proportion of

visits to words in S along z is between i
L and t+(Mi/L)

M+1 . This implies that it is in

the interval ( iL −M
−1, iL +M−1), and so is not equal to x. Therefore, any uniquely

ergodic subshift contained in Z is in M(n, x)c.
By definition, every z ∈ Z contains all words in Ln(X) as subwords. Exactly

as shown in the proof of Theorem 6.4, Z contains a mixing shift of finite type Z ′.
Define m ≥ n so that Z ′ is defined by a set of m-letter forbidden words; note that
then Z ′ = S([Z ′,m]). Then the cylinder [Z ′,m] is contained in [Z, n], which is
in turn contained in C, and any uniquely ergodic subshift in [Z ′,m] is a subset
of Z ′, so also in M(n, x)c. Thus C contains a subcylinder disjoint from M(n, x),
completing the proof.

�

Let UEI denote the set of uniquely ergodic subshifts for which the only rational
measures of clopen sets are 0 and 1.

Corollary 6.19. The set UEI is residual in TT′.

Proof. We simply note that any X in
(⋃

q∈Q,n∈N M(n, q)
)c

has the desired prop-

erty, and by Baire category this set is residual in TT′. �

We can now show that the dimension group has rank two for generic subshifts
in TT′.

Proposition 6.20. The set of uniquely ergodic minimal subshifts whose dimension
group is rank two and contains no nontrivial infinitesimals is residual in TT′.

Proof. We already know by Theorem 6.5 that the set of uniquely ergodic minimal
subshifts with topological rank two is residual and that the set UEI of uniquely
ergodic subshifts where all clopen sets have measure 0, 1, or irrational is residual.
Then the set of subshifts in UEI which have topological rank two is also residual.
We will show that any X ∈ UEI which has topological rank two has a rank two
dimension group and no nontrivial infinitesimals.
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It is well-known (see e.g. [28]) that topological rank is an upper bound for the
rank of the dimension group, and X has topological rank two by assumption, so
GσX has rank at most two. Since X ∈ UEI, the range of the state τµX contains
both 1 and some irrational, so the image of τµX has rank at least two, implying
that the rank of GσX is exactly two. Since GσX is torsion-free, this implies there are
no nontrivial infinitesimals. �

Recall from Corollary 5.32 that in T′ there is a single strong orbit equivalence
class which is generic. In stark contrast, we now show that in TT′, no orbit
equivalence class is generic. We will make use of the following fact: if two uniquely
ergodic minimal Cantor systems (X1, σX1) and (X2, σX2) with invariant probability
measures µX1 , µX2 are orbit equivalent then the sets {µX1(E) | E ⊂ X1 is clopen}
and {µX2

(F ) | F ⊂ X2 F is clopen} are equal (in fact, by [28, Cor. 1] this condition
is also sufficient in the uniquely ergodic minimal case).

Corollary 6.21. For any uniquely ergodic minimal subshift X ∈ TT′, the orbit
equivalence class of X in TT′ is meager. Consequently, no orbit equivalence class
is generic in TT′.

Proof. Let (X,σX) be a uniquely ergodic minimal subshift in TT′, define any
nonempty clopen C ( X, and define α = µX(C) (clearly α /∈ {0, 1}). Suppose
(Y, σY ) is orbit equivalent to (X,σX) via an orbit equivalence φ : Y → X; then
(Y, σY ) is also uniquely ergodic. By the fact above, there exists clopen D so that
µY (D) = α. Therefore, Y ∈

⋃
n∈N M(n, α). We have shown that the orbit equiv-

alence class of (X,σX) is contained in the set
⋃
n∈N M(n, α), which is meager by

Theorem 6.18.
The second statement follows from the fact that uniquely ergodic minimal sub-

shifts are generic in TT′ by Theorem 6.5. �

Finally, we will show that a generic subshift in TT′ is (uniquely ergodic and)
not balanced for any letter in the sense of Definition 5.34. This is an interesting
contrast to T′; there we first proved that a generic subshift was balanced for factors
and used that to show that a generic subshift there has no infinitesimals. Here, we
show that even though a typical subshift still has no infinitesimals, it is not even
balanced for letters.

Proposition 6.22. The set NBL of uniquely ergodic subshifts which are not bal-
anced for any letter is residual in TT′.

Proof. We first show that NBL is dense. To see this, recall that in the proof of
Theorem 6.4, it was shown that any nonempty cylinder C = [X,n] in TT′ contains
a (mixing sofic) subshift Z containing all possible concatenations of words wu and
wv for some words w, u, v where u and v have lengths differing by 1, and where wu
and wv each contain all letters of the alphabet A of C (since they contained all
words in Ln(X)). Consider the words s = (wu)|wv| and t = (wv)|wu| and any letter
a ∈ A. If s and t contained the same number of occurrences of a, then that number
would be a multiple of |wu| and |wv|; since they are relatively prime, this number
of occurrences would be a multiple of |wu||wv|. But s and t are of length |wu||wv|
and |wv||wu| and contain both a and other letters, and so this is not possible.
Therefore, s and t contain different numbers of occurrences of a for every a ∈ A.
Finally, consider any uniquely ergodic subshift Y on {0, 1} which is not balanced
for 0 and 1 (for instance, the Chacon substitution) and define τ sending 0 to wu
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and 1 to wv. It’s easily checked that τ∗(Y ) is uniquely ergodic and not balanced
for any letter, and τ∗(Y ) is in C since it’s a subset of Z ∈ C and since every word
in Ln(X) occurs in wu and wv, which are subwords of all points of τ∗(Y ). Since C
was an arbitrary nonempty cylinder in TT′, NBL is dense in TT′.

Finally, we show that NBL is a Gδ in S (and therefore also in TT′). To see
this, we note that for any finite A ⊂ Z, a uniquely ergodic subshift X ∈ S[A] is
not balanced for any letter if and only if, for all n, there exists k so that for all
a ∈ A, there are words v, w of the same length which are subwords of some words
in Lk(X) where the number of a in v and w differs by at least n.

For any A, n, k, denote by U(A, n, k) the set of all S ⊂ Ak with this property.
Then, we can write

NBL =
⋂
n∈N

⋃
k∈N,

A⊂Z,|A|<∞

{X ∈ UE | Lk(X) ∈ U(A, n, k)}

= UE ∩
⋂
n∈N

⋃
k∈N,

A⊂Z,|A|<∞

⋃
X∈S

Lk(X)∈U(A,n,k)

[X, k].

Since UE is known to be a Gδ, this completes the proof. �

Remark 6.23. That a generic subshift in TT′ is not balanced may be deduced
from Theorem 6.6 together with Proposition 5.4 of [4]. Proposition 6.22 proves
something stronger however, namely that a generic subshift in TT′ is not balanced
for any letter.

6.4. Automorphism groups and mapping class groups in TT′. Analogous
to T, the automorphism group of a generic subshift in TT′ is generated by the shift
map.

Corollary 6.24. The set of subshifts whose automorphism group is generated by
the shift is residual in TT′.

Proof. By Theorem 6.5, a generic subshift in TT′ is infinite, minimal and has
topological rank two, so again by [17, Thm 3.1] and [18, Sec. 7], its automorphism
group is generated by the shift map. �

We now turn to mapping class groups again. Recall the affine group Aff(Q) is
the group of affine transformations of Q of the form x 7→ ax+ b, and is isomorphic

to the subgroup of matrices in GL2(Q) of the form

(
s 0
r 1

)
. Our goal in what

remains is to show the following.

Theorem 6.25. The set of subshifts whose mapping class group M(σX) is iso-
morphic to a subgroup of the affine group Aff(Q) is residual in TT′.

Before beginning the proof, we briefly describe some tools from [45] we will
make use of. Recall for a subshift (X,σX) the group GσX of coinvariants (defined
in Section 2). There is a coinvariants representation for M(σX) in the form of a
homomorphism

ΦX : M(σX)→ Aut(GσX )
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where Aut(GσX ) denotes the group of automorphisms of the abelian group GσX .
Note that automorphisms in the image of ΦX need not preserve the order unit
[1] ∈ GσX . For a uniquely ergodic subshift (X,σX) there is a homomorphism

RµX : M(σX)→ R∗>0

RµX : [f ] 7→ τµX (ΦX(f)([1])).

where R∗>0 is the group of positive real numbers under multiplication.

Proof. Consider the set K of subshifts in TT′ which are minimal, uniquely ergodic,
have dimension group rank two with trivial infinitesimal subgroup, do not have
linear complexity, and whose automorphism group is generated by the shift map.
By Corollary 6.24, Theorem 6.13, Theorem 6.5 and Proposition 6.20, the set K is
residual in TT′, so it suffices to show that any subshift in K has mapping class
group isomorphic to a subgroup of Aff(Q).

Let (X,σX) be such a subshift. Since (X,σX) is minimal, it follows from [45,
Thm. 4.8] that there is a short exact sequence

1→ K →M(σX)→ image(ΦX)→ 1

where K is a subgroup of Aut(X,σX)/〈σX〉. Since Aut(X,σX)/〈σX〉 is trivial
by assumption, this implies M(σX) is isomorphic to the subgroup image(ΦX) ⊂
Aut(GσX ). By assumption, the group GσX is rank two. Let V be the rational vector
space Gσ ⊗Q, and let v2 denote the vector 1⊗ 1 in V . Since GσX is rank two, we
may find g ∈ GσX such that, letting v1 = g ⊗ 1 ∈ V , the set {v1, v2} forms a basis
for V . For any [f ] ∈M(σX), we have that ΦX([f ]) is an automorphism of GσX and
extends to an automorphism of V , which we may represent using the basis {v1, v2}
by a rational matrix A[f ]; since ΦX is injective, we may thus identify M(σX) with
a subgroup of GL2(Q). We will show this subgroup is isomorphic to a subgroup of
Aff(Q).

First we claim that the map RµX : M(σX) → R∗>0 is trivial, i.e. RµX ([f ]) = 1
for all [f ] ∈ M(σX). In [45, Prop. 4.22] it is shown that if RµX ([f ]) 6= 1 for some
[f ] ∈M(σX), then (X,σX) is a self-induced system (see [23] for the definition of a
self-induced system). Since (X,σX) is expansive, by [23, Thm. 14] this would imply
(X,σX) is topologically conjugate to a primitive substitution subshift. However, a
primitive substitution subshift has linear complexity [6, Thm. 2.3]. Since (X,σX)
by assumption does not have linear complexity and linear complexity is preserved
by topological conjugacy, altogether it follows that RµX is the trivial map.

Let Haff denote the subgroup of matrices in GL2(Q) of the form

(
s 0
r 1

)
where

r, s ∈ Q. We will show that for any [f ] ∈M(σX), the matrix A[f ] lies in Haff; since
the group Haff is isomorphic to Aff(Q), this completes the proof.

Fix now some element [f ] ∈ M(σX). Since RµX is the trivial map, we have
that τµX (ΦX(f)([1])) = 1, or equivalently, that ΦX(f)([1])− [1] is an infinitesimal.
By assumption, X has no nontrivial infinitesimals, so this implies ΦX(f)([1]) =

[1] ∈ GσX . Note that in the basis {v1, v2}, in vector notation

(
0
1

)
corresponds to

v2 = 1⊗ 1. Since ΦX(f)([1]) = [1] , we have that

A[f ]

(
0
1

)
=

(
0
1

)
.
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This implies A[f ] =

(
s 0
r 1

)
for some r, s ∈ Q, so A[f ] ∈ HAff as desired. �

We note that since the affine group Aff(Q) is metabelian, Theorem 6.25 in par-
ticular implies the mapping class group of a generic subshift in TT′ is metabelian.
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[15] Maŕıa Isabel Cortez, Fabien Durand, and Samuel Petite. Eigenvalues and strong orbit equiv-

alence. Ergodic Theory Dynam. Systems, 36(8):2419–2440, 2016.

[16] Van Cyr and Bryna Kra. Characteristic measures for language stable subshifts. arXiv e-prints,
page arXiv:2101.12669, January 2021.

[17] Sebastián Donoso, Fabien Durand, Alejandro Maass, and Samuel Petite. On automorphism
groups of low complexity subshifts. Ergodic Theory Dynam. Systems, 36(1):64–95, 2016.

[18] Sebastián Donoso, Fabien Durand, Alejandro Maass, and Samuel Petite. Interplay between
finite topological rank minimal Cantor systems, S-adic subshifts and their complexity. Trans.
Amer. Math. Soc., 374(5):3453–3489, 2021.

[19] Tomasz Downarowicz. Survey of odometers and Toeplitz flows. In Algebraic and topological

dynamics, volume 385 of Contemp. Math., pages 7–37. Amer. Math. Soc., Providence, RI,
2005.

[20] Tomasz Downarowicz and Stanis l aw Kasjan. Odometers and Toeplitz systems revisited in
the context of Sarnak’s conjecture. Studia Math., 229(1):45–72, 2015.

[21] F. Durand, B. Host, and C. Skau. Substitutional dynamical systems, Bratteli diagrams and
dimension groups. Ergodic Theory Dynam. Systems, 19(4):953–993, 1999.

[22] Fabien Durand and Julien Leroy. S-adic conjecture and Bratteli diagrams. C. R. Math. Acad.
Sci. Paris, 350(21-22):979–983, 2012.



52 RONNIE PAVLOV AND SCOTT SCHMIEDING

[23] Fabien Durand, Nicholas Ormes, and Samuel Petite. Self-induced systems. J. Anal. Math.,

135(2):725–756, 2018.

[24] Bastián Espinoza. On symbolic factors of S-adic subshifts of finite topological rank. arXiv
e-prints, page arXiv:2012.00715, December 2020.
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[26] Sébastien Ferenczi. Complexity of sequences and dynamical systems. Discrete Math., 206(1-

3):145–154, 1999. Combinatorics and number theory (Tiruchirappalli, 1996).

[27] Joshua Frisch and Omer Tamuz. Symbolic dynamics on amenable groups: the entropy of
generic shifts. Ergodic Theory Dynam. Systems, 37(4):1187–1210, 2017.

[28] Thierry Giordano, Ian F. Putnam, and Christian F. Skau. Topological orbit equivalence and

C∗-crossed products. J. Reine Angew. Math., 469:51–111, 1995.
[29] Eli Glasner and Jonathan L. King. A zero-one law for dynamical properties. In Topological

dynamics and applications (Minneapolis, MN, 1995), volume 215 of Contemp. Math., pages
231–242. Amer. Math. Soc., Providence, RI, 1998.

[30] Walter Helbig Gottschalk and Gustav Arnold Hedlund. Topological dynamics. American

Mathematical Society Colloquium Publications, Vol. 36. American Mathematical Society,
Providence, R.I., 1955.

[31] Frank Hahn and Yitzhak Katznelson. On the entropy of uniquely ergodic transformations.

Trans. Amer. Math. Soc., 126:335–360, 1967.
[32] Paul R. Halmos. In general a measure preserving transformation is mixing. Ann. of Math.

(2), 45:786–792, 1944.

[33] Paul R. Halmos. Lectures on ergodic theory. Chelsea Publishing Co., New York, 1960.
[34] Michael Hochman. Genericity in topological dynamics. Ergodic Theory Dynam. Systems,

28(1):125–165, 2008.

[35] Alexander S. Kechris and Christian Rosendal. Turbulence, amalgamation, and generic auto-
morphisms of homogeneous structures. Proc. Lond. Math. Soc. (3), 94(2):302–350, 2007.

[36] Michel Koskas. Complexités de suites de Toeplitz. Discrete Math., 183(1-3):161–183, 1998.
[37] Douglas Lind and Brian Marcus. An introduction to symbolic dynamics and coding. Cam-

bridge University Press, Cambridge, 1995.

[38] Nic Ormes and Ronnie Pavlov. On the complexity function for sequences which are not
uniformly recurrent. In Dynamical systems and random processes, volume 736 of Contemp.

Math., pages 125–137. Amer. Math. Soc., [Providence], RI, [2019] c©2019.

[39] J. C. Oxtoby and S. M. Ulam. Measure-preserving homeomorphisms and metrical transitivity.
Ann. of Math. (2), 42:874–920, 1941.

[40] K. R. Parthasarathy. On the category of ergodic measures. Illinois J. Math., 5:648–656, 1961.

[41] K. R. Parthasarathy. A note on mixing processes. Sankhyā Ser. A, 24:331–332, 1962.
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