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Abstract. In this paper, we study perturbations of multidimensional shifts of finite

type. Specifically, for any Zd shift of finite type X with d > 1 and any finite pattern

w in the language of X, we denote by Xw the set of elements of X not containing

w. For strongly irreducible X and patterns w with shape a d-dimensional cube,

we obtain upper and lower bounds on htop(X) − htop(Xw) dependent on the size

of w. This extends a result of Lind for d = 1. We also apply our methods to an

undecidability question in Zd symbolic dynamics.

1. Introduction

Among the main objects of study in symbolic dynamics are the Zd shifts of finite

type (or SFTs). Informally, a Zd shift of finite type is defined by specifying a finite

alphabet A and a finite set of finite “forbidden patterns” F made up of letters from

A, and then defining XF to be the set of configurations in AZd

in which no pattern

from F appears. The simplest nondegenerate example of an SFT is the Zd golden

mean shift G, where A = {0, 1} and the forbidden patterns are any adjacent pair

of 1s. Then for d = 1, G is the set of all biinfinite strings of 0s and 1s in which 1s

never appear consecutively. For d = 2, G is the set of all ways of assigning 0 or 1

to all points in Z2 so that there is no adjacent pair of 1s horizontally or vertically.

For any Zd SFT X, its topological entropy htop(X) measures the exponential

growth rate of the number of patterns which appear in points of X. For any Zd

SFT X, and any pattern w which appears in some point of X, define a new SFT

Xw by adding w to the list of forbidden patterns. Then clearly Xw ⊆ X, and so

the topological entropy of Xw is at most that of X. We are interested in estimating

the drop htop(X)−htop(Xw) in topological entropy, and how this quantity behaves

as the extra forbidden pattern w becomes large.
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2 R. Pavlov

As is often the case in symbolic dynamics, to obtain any general result, some sort

of mixing condition must be imposed on X. We use the term “mixing condition”

here to describe a wide range of properties which can be possessed by a SFT, all

of which deal with the question: given points x, y ∈ X and finite subsets S and T

of Zd, does there exist a point z ∈ X such that z|S = x|S and z|T = y|T ? There is

a fairly large hierarchy of mixing conditions for Zd SFTs, but the only ones which

we will concern ourselves with in this paper, in order from weakest to strongest,

are irreducibility, topological mixing, and strong irreducibility. (All of these are

defined in Section 2.) For a more detailed examination of this hierarchy of mixing

conditions, see [2].

For d = 1, the following theorem of Lind shows that quite strong statements

may be made about htop(X) − htop(Xw) even under our weakest mixing condition

of irreducibility.

Theorem 1.1. ([7], p. 360, Theorem 3) For any irreducible Z SFT X on an

alphabet A with positive topological entropy htop(X), there exist constants CX ,

DX > 0 and NX ∈ N such that for any n > NX and any pattern w ∈ A[1,n]

which appears as a subpattern of some point of X,

CX

ehtop(X)n
< htop(X) − htop(Xw) <

DX

ehtop(X)n
.

The main result of this paper is a version of Theorem 1.1 for d > 1.

Theorem 1.2. For any d > 1 and any strongly irreducible Zd SFT X on an

alphabet A with |X| > 1, there exist constants CX ,DX > 0, AX , BX , and NX ∈ N

such that for any n > NX and any pattern w ∈ A[1,n]d which appears as a subpattern

of some point of X,

CX

ehtop(X)(n+AX)d
< htop(X) − htop(Xw) <

DX

ehtop(X)(n+BX)d
.

Note that our hypothesis is the much stronger mixing condition of strong

irreducibility, and the bounds on htop(X)−htop(Xw) do not differ by a multiplicative

constant as they do in Theorem 1.1. (It is not necessary to assume that htop(X) > 0;

Lemma 4.11 shows that any strongly irreducible subshift containing at least two

points has positive topological entropy.) In Section 3, we will demonstrate why

such sacrifices must be made in any meaningful multidimensional extension of

Theorem 1.1. This discussion will have the dual purposes of motivating our result

and illustrating some of the complexities that arise in symbolic dynamics when

d > 1.

We now briefly outline the content of this paper. In Section 2, we give some

necessary definitions and terminology.

In Section 3, we discuss some of the difficulties inherent in extending Theorem 1.1

to multiple dimensions, and attempt to justify Theorem 1.2 as the “correct” such

extension.
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Perturbations of Multidimensional SFTs 3

In Section 4, we prove some preliminary results about generic patterns for

measures on subshifts that will be integral in the proof of Theorem 1.2.

Section 5 contains the proof of the upper bound of Theorem 1.2.

Section 6 is devoted to a somewhat complicated self-contained result about

replacements of patterns which is necessary for the proof in Section 5.

Section 7 contains the proof of the lower bound portion of Theorem 1.2.

Section 8 is about the construction of a pattern wo,d whose existence is a

necessary ingredient in the proof in Section 7.

Section 9 presents an application of our results to an undecidability question for

SFTs in higher dimensions.

For a thorough introduction to higher-dimensional symbolic dynamics, see [8].

2. Definitions and terminology

We begin with some basic definitions and terminology. In this paper, an alphabet

will always be a finite set with at least two elements.

Definition 2.1. The Zd full shift on A is the set AZd

. For any full shift AZd

, we

define the Zd-shift action {σ~v}~v∈Zd on AZd

as follows: for any ~v ∈ Zd and x ∈ AZd

,

(σ~v(x))(~u) = x(~v + ~u) for all ~u ∈ Zd.

Definition 2.2. A Zd subshift on an alphabet A is a set X ⊆ AZd

with the following

two properties:

(i) X is shift-invariant, meaning that for any x ∈ X and ~v ∈ Zd, σ~v(x) ∈ X.

(ii) X is closed in the product topology on AZd

.

When the value of d is clear, we will sometimes omit the Zd and just use the

term subshift.

A pattern u on the alphabet A is any mapping from a non-empty subset S of

Zd to A, where S is called the shape of u. For patterns u and u′, where u has

shape S, we say that u is a subpattern of u′ if there exists ~p ∈ Zd such that

u(~q) = u′(~q + ~p) for all ~q ∈ S. We use the term occurrence to refer to a specific

instance of a pattern u as a subpattern within a larger pattern u′. For any pattern

u with shape S and any T ⊆ S, denote by u|T the restriction of u to T , i.e. the

subpattern of u occupying T .

Definition 2.3. The language of a subshift X, denoted by L(X), is the set of

patterns which appear as subpatterns of elements of X. The set of patterns with a

particular shape S which are in the language of X is denoted by LS(X).

For any pattern u with shape S in a subshift X, denote by [u] the set

{x ∈ X : x|S = u}, called the cylinder set of u. Although it is a slight abuse of

notation, in certain situations we will also refer by [u] to the set of all patterns w

such that w|S = u; for instance we use LT (X) ∩ [u] to refer to the set of patterns

w with shape T such that w|S = u.
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Definition 2.4. A Zd shift of finite type (or SFT) X is defined by specifying a

finite collection of finite patterns on A (call this collection F), and then defining

X = (AZd

)F to be the set of elements of AZd

which do not contain any member

of F as subpatterns. For any fixed X, the type of X is the minimum nonnegative

integer t such that for some F consisting entirely of patterns with shape [1, t]d,

X = (AZd

)F . A shift of type two is called a Markov shift.

It is not hard to see that any Zd shift of finite type is a Zd subshift.

We will often make use of the l∞ metric on Rd: for ~p, ~q ∈ Rd, ‖~p − ~q‖∞ =

max1≤i≤d |pi − qi|. This metric on Rd induces a notion of “distance” between

subsets of Zd: for S, T ⊂ Zd, we say ρ(S, T ) = min~s∈S,~t∈T ‖~s− ~t‖∞.

Definition 2.5. A Zd subshift X is topologically mixing if for any x, y ∈ X and

any finite S, T ⊂ Zd, there exists R such that for any ~p ∈ Zd with the property that

ρ(S, T + ~p) > R, there exists z ∈ X such that z|S = x|S and z|T+~p = y|T+~p.

Definition 2.6. A Zd subshift X is strongly irreducible if there exists R such that

for any x, y ∈ X and any finite S, T ⊂ Zd, and for any ~p ∈ Zd with the property

that ρ(S, T + ~p) > R, there exists z ∈ X such that z|S = x|S and z|T+~p = y|T+~p.

We call the minimum such R the uniform filling length of X.

For d = 1, an SFT X is irreducible if it contains a dense forward orbit, i.e. if

there exists x ∈ X so that {σnx}n∈Z+ is dense in X. There are several natural

extensions of this definition when d > 1, but all of them are extremely weak

conditions (much weaker than topological mixing), and so we do not present them

here.

Definition 2.7. Two Zd subshifts X and Y are topologically conjugate (denoted

X ∼= Y ) if there exists a bijective map from X to Y which is continuous in the

product topology and which commutes with the Zd-shift action. Such a map is

called a topological conjugacy.

We denote by Pj1,j2,...,jd
the j1×j2×. . .×jd rectangular prism

∏d
i=1{1, 2, . . . , ji}

in Zd, and use the notation Γj for the cube Pj,j,...,j . We call j1, . . . , jd the sizes of

Pj1,...,jd
, and call j the size of Γj .

Definition 2.8. The topological entropy of a Zd subshift X, denoted by htop(X),

is defined by

htop(X) = lim
j1,j2,...,jd→∞

ln |LPj1,j2,...,jd
(X)|

j1j2 · · · jd
.

Topological entropy is an invariant under topological conjugacy, i.e. if X ∼= Y ,

then htop(X) = htop(Y ). In fact, it is one of the most useful and important

invariants associated to a subshift.

The following notations and definitions will be needed in some of the more

technical details of our proofs.
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For each 1 ≤ i ≤ d, we denote by ~ei the ith element of the standard basis for Zd,

and for ~p, ~q ∈ Rd, the distance in the ~ei-direction between ~p and ~q is defined to

be |pi − qi|. We denote by ~1 ∈ Zd the vector whose entries are all ones.

For any S, S′, T ⊆ Zd satisfying S, S′ ⊇ T , we say that patterns u with shape S

and u′ with shape S′ agree on T if u|T = u′|T , i.e. u and u′ have the same letters

on T .

The boundary of thickness k of a subset S of Zd, which is denoted by S(k), is

the set of ~p ∈ S for which there exists ~q ∈ Zd�S with ‖~p− ~q‖∞ ≤ k. Whenever we

refer to just the boundary of a shape S, we mean the boundary of thickness one.

For any S ⊆ Zd, a set T ⊆ Zd is called a copy of S if T = S+~v for some ~v ∈ Zd.

This ~v is then called the difference of S and T , denoted by T − S. For any sets

A ⊂ S and B ⊂ T , we say that A in S corresponds to B in T if A = B+(S−T ).

A pattern v with shape S forces a pattern w with shape T in a subshift X if

for every x ∈ X, x|S = v ⇒ x|T = w.

A pattern w with shape S is periodic with respect to ~v ∈ Zd if S ∩ (S−~v) 6= ∅

and w(~u) = w(~u+ ~v) for all ~u ∈ S ∩ (S − ~v). We also say that ~v is a period of w.

A pattern is aperiodic if it has no periods.

3. Motivation and examples

The question of what a “natural” multidimensional version of Theorem 1.1 should

look like is not easily answered. First, let’s examine the conclusion. One might think

that in Theorem 1.2, we should have just replaced the ehtop(X)n in Theorem 1.1 by

ehtop(X)nd

. However, we can quickly see that this is a bit too much to hope for.

Example 3.1. For any d > 1, define Y to be the full shift {0, 1}Zd

. For every j ∈ N,

define the higher block code fj : Y → (AΓj )Zd

by (fj(x))(~p) = x|~p+Γj−~1 for every

x ∈ Y and ~p ∈ Zd. In other words, for every ~p ∈ Zd, (fj(x))(~p) is defined to be the

subpattern of x which lies in Γj + ~p− ~1, or a copy of Γj whose least corner in the

usual lexicographic order on Zd is ~p. Higher block codes are topological conjugacies

(see [9] for a proof in one dimension, which is easily extendable to Zd), so Y is

topologically conjugate to fj(Y ) for every j ∈ N. We can also think of fj as a

bijection between LΓn
(Y ) and LΓn−j+1

(fj(Y )) for all n ≥ j. This means that for

any n ≥ j and any w ∈ LΓn
(Y ), Yw and (fj(Y ))fj(w) are topologically conjugate

as well, and therefore have the same topological entropy.

Let us suppose that a Zd version of Theorem 1.1 could be made by simply

changing the n in the exponent to nd. Then for any d > 1 and any strongly

irreducible Zd SFT X = (AZd

)F , there exist constants CX ,DX > 0, and NX ∈ N

such that for any n > NX and any pattern w ∈ A[1,n]d which appears as a

subpattern of some point of X, CX

ehtop(X)nd < htop(X) − htop(Xw) < DX

ehtop(X)nd .

In particular, for any pattern w ∈ LΓn
(Y ) with n > NY ,

CY

ehtop(Y )nd
< htop(Y ) − htop(Yw) <

DY

ehtop(Y )nd
.

This means that for any j, if in addition n > NY + j − 1, then
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CY

ehtop(Y )nd
< htop(fj(Y )) − htop((fj(Y ))fj(w)) <

DY

ehtop(Y )nd
. (1)

Since fj(w) ∈ LΓn−j+1
(fj(Y )), if n > Nfj(Y ) then

Cfj(Y )

ehtop(fj(Y ))(n−j+1)d
< htop(fj(Y ))−htop((fj(Y ))fj(w)) <

Dfj(Y )

ehtop(fj(Y ))(n−j+1)d
. (2)

However, since d > 1 and htop(fj(Y )) = htop(Y ), ehtop(fj(Y ))nd

grows much

more quickly than ehtop(Y )(n−j+1)d

as n → ∞. Therefore (1) and (2) contradict

each other. Example 3 then shows that AX and BX cannot be omitted in the

statement of Theorem 1.2. Since j could be arbitrarily large in Example 3, it must

be the case that AX and BX depend on X rather than being absolute constants. If

X has uniform filling length R, then the values we actually achieve in the proof of

Theorem 1.2 are AX = 44R+71 and BX = −2R. We note that these constants AX

and BX could be thought of as being present in Theorem 1.1 as well, but hidden

inside the constants CX and DX .

We now address the hypotheses of Theorem 1.2. There are examples which

show that for d > 1, topological mixing is not sufficient to get meaningful bounds

on htop(X)−htop(Xw). Regarding the upper bound, there is a topologically mixing

Z2 SFT X∗ defined in [6] such that htop(X∗) > 0, and for which there exist square

patterns c of arbitrarily large size such that htop((X∗)c) = 0. (c is defined on p. 29

of [6]. In the language used there, for every n, every level-n rectangle contains the

2n×2n pattern c, and the set of points containing no level-n rectangle is called the

set of exceptional points, which is shown to have zero entropy.) For the lower bound,

there is a topologically mixing Z2 SFT X
(N)
MS defined in [2] with positive topological

entropy whose alphabet contains a letter g so that htop(X
(N)
MS )) = htop((X

(N)
MS )g).

This clearly implies that htop(X
(N)
MS ) = htop((X

(N)
MS )w) for any pattern w containing

g as well. These two examples show that for d > 1, no meaningful upper and lower

bounds on htop(X) − htop(Xw) dependent only on the size of w can exist for all

topologically mixing Zd SFTs. To obtain a conclusion of the strength we want, a

stronger mixing condition is then necessary. The hypothesis we use is that of strong

irreducibility.

The difference in the notions of strong irreducibility and topological mixing is

that for strong irreducibility, the distance R between shapes S and T necessary for

interpolation between patterns in LS(X) and LT (X) is independent of S and T ,

whereas in topological mixing, this distance depends on S and T . When d = 1,

these two notions coincide. (To see this, note that for a Z Markov shift, any distance

sufficient for interpolating between any two letters of the alphabet is sufficient to

interpolate between any two patterns.) However, strong irreducibility is a strictly

stronger notion in more than one dimension: for any shape S and ~v ∈ Zd with

ρ({~v}, S) > R and any a ∈ A, by the definition of strong irreducibility there is

some y ∈ X with y|S = w and y(~v) = a; yet there exist topologically mixing SFTs

for d > 1 such that for any k, some patterns force letters a distance k away, including
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Perturbations of Multidimensional SFTs 7

the checkerboard island shift of Quas and Sahin ([11]) and the aforementioned X∗
shift of Hochman ([6]). Any such system is then an example of a topologically

mixing but not strongly irreducible SFT.

Our example fj(Y ) used above to show the necessity of the constants AX and

BX in Theorem 1.2 did not actually show that AX and BX are not the same. The

following example will show that in fact AX and BX must be distinct, even if X is

assumed to be a strongly irreducible Zd SFT.

Example 3.2. For any d > 1 and j > 1, define the Zd SFT Zj on the alphabet {0, 1}
with the set of forbidden patterns Fj = {w ∈ {0, 1}Γj : w has at least two 1s}. In

other words, Zj consists of all infinite patterns of 0s and 1s on Zd such that any

two 1s are a ‖ ‖∞-distance of at least j from each other. Zj is clearly an SFT. It

is also strongly irreducible with R = j − 1: for any pair of patterns in L(Zj) which

are a distance of at least j from each other, one can make a point of Xj by filling

the rest of Z2 with 0s.

We claim that in the language of Theorem 1.2, it must be the case that

AZj
6= BZj

, and in fact that AZj
− BZj

≥ 2j − 2 = 2R. To prove this, we

first make a definition: for any n > 0, we define the pattern an with shape Γnj+1

by an(~p) = 1 if and only if all coordinates of ~p are equal to 1 (mod j). Clearly,

an ∈ L(Zj). Let us also for any n > 0 define the pattern bn with shape Γ(n+2)j−1

where bn has an as a subpattern occupying its central copy of Γnj+1, and has 0s

on all of Γ
(j−1)
(n+2)j−1. By the definition of Zj , any occurrence of an in an element

of Zj forces an occurrence of bn containing it. Therefore, (Zj)an
= (Zj)bn

for any

n. However, the size of the shape of bn is 2j − 2 bigger than that of an for any n,

and so for any AZj
and BZj

which satisfy Theorem 1.2, it must be the case that

AZj
− BZj

≥ 2j − 2 = 2R for any j. This shows that AX − BX must be at least

linear in R, and so the value of 46R+71 for AX −BX attained in Theorem 1.2 can

be improved by at most additive and multiplicative constants.

In addition to these necessary changes in the statement of a multidimensional

version of Theorem 1.1, changes must be made to the proof as well. Lind’s proof

of Theorem 1.1 relied strongly on techniques from linear algebra. In particular,

he uses the fact that the topological entropy of a Z SFT is the logarithm of the

Perron eigenvalue of its (integer-valued) transition matrix. However, there is no

known procedure for using transition matrices to explicitly compute htop(X) when

d > 1. Even if the notion is extendable in some way, the situation cannot be nearly

as simple as in the Z case, since there exists a Z2 SFT X where htop(X) is not

the logarithm of an algebraic number! ([5]) Therefore, to prove a multidimensional

version of Theorem 1.1, we must use a different approach. Our methods are similar

in places to those used in [12], where the effect on entropy of removing patterns

from SFTs is also examined.

4. Some measure-theoretic preliminaries

The proof of Theorem 1.2 rests on some general measure-theoretic facts about Zd

subshifts, generic patterns, and measures of maximal entropy, which we will prove
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in this section. For our purposes, a measure on a subshift X will always be a

shift-invariant Borel probability measure.

Definition 4.1. The measure-theoretic entropy of a subshift X with respect to

a measure µ on X, which is denoted by hµ(X), is defined by

hµ(X) = lim
j1,j2,...,jd→∞

1

j1j2 · · · jd
∑

w∈LPj1,...,jd
(X)

f(µ([w])),

where [w] is the cylinder set {x ∈ X : x|Pj1,...,jd
= w}, f(x) := −x lnx for x > 0,

and f(0) = 0.

Definition 4.2. A measure µ on a subshift X is called a measure of maximal

entropy if hµ(X) = htop(X).

Such measures are said to have maximal entropy because of the following

Variational Principle.

Theorem 4.3. For any Zd subshift X, htop(X) = suphµ(X). This supremum is

achieved for some µ.

See [10] for a proof. It is well-known that in fact any Zd subshift has an ergodic

measure of maximal entropy. The following proposition gives a useful property for

measures of maximal entropy on SFTs.

Proposition 4.4. ([3], p. 281, Proposition 1.20) For any d, any Zd shift X of

finite type t, any µ a measure of maximal entropy for X, and any shape U ⊆ Zd,

the conditional distribution of µ on U given any fixed pattern w ∈ L(Uc)(t)(X) is

uniform over all patterns x ∈ LU (X) such that the pattern y with shape U ∪ (U c)(t)

defined by y|U = x and y|(Uc)(t) = w is in L(X).

Proposition 4.4 says that any pair of patterns with the same shape U ∪ (U c)(t)

which agree on (U c)(t) have the same measure for any measure of maximal entropy.

By taking U = S \ S(t) for any shape S, it also implies that any two patterns with

shape S which agree on S(t) have the same measure for any measure of maximal

entropy. It is then clear that two patterns with shape S which agree on a set

containing S(t) have the same measure for any measure of maximal entropy as well,

which gives the following corollary:

Corollary 4.5. For any d, any Zd shift X of finite type t, any measure µ of

maximal entropy on X, any shapes S and T satisfying S(t) ⊆ T ⊆ S, and any

pattern w ∈ LS(X), µ([w]) = µ([w|T ])
|LS(X)∩[w|T ]| .

Lemma 4.6. For any d, any strongly irreducible Zd shift X of finite type t with

uniform filling length R, any measure µ of maximal entropy on X, any shape S,

and any u ∈ LS(X),

1∣∣L(
S∪(Sc)(t+R)

)
�

(
S∪(Sc)(t+R)

)(t)(X)
∣∣ ≤ µ([u]) ≤ 1∣∣LS�S(R)(X)

∣∣ .
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Perturbations of Multidimensional SFTs 9

Proof. Fix d, X, µ, S, and u ∈ LS(X). We begin by bounding µ([u]) from

below. Choose any pattern v ∈ L(S∪(Sc)(t+R))(t)(X). We claim that ρ(S, (S ∪
(Sc)(t+R))(t)) > R. Consider any ~p ∈ S and ~q ∈ (S ∪ (Sc)(t+R))(t). By definition,

there exists ~r /∈ S ∪ (Sc)t+R such that ‖~q − ~r‖∞ ≤ t. Also by definition,

‖~p − ~r‖∞ > R + t. Therefore, by the triangle inequality, ‖~p − ~q‖∞ > R, and

since ~p ∈ S and ~q ∈ (S ∪ (Sc)(t+R))(t) were arbitrary, ρ(S, (S ∪ (Sc)(t+R))(t)) > R

as claimed. This means that by strong irreducibility, there exists a pattern wv ∈
LS∪(Sc)(t+R)(X) such that wv|S = u and wv|(S∪(Sc)(t+R))(t) = v. By Corollary 4.5,

µ([wv]) = µ([v])
|L

S∪(Sc)(t+R) (X)∩[v]| . Clearly the number of patterns in L(X) with shape

S∪(Sc)(t+R) which equal v on (S∪(Sc)(t+R))(t) is less than or equal to the number

of patterns in L(X) with shape
(
S ∪ (Sc)(t+R)

)
�

(
S ∪ (Sc)(t+R)

)(t)
, and so

µ([wv]) ≥ µ([v])∣∣L(
S∪(Sc)(t+R)

)
�

(
S∪(Sc)(t+R)

)(t)(X)
∣∣ . (3)

If we sum (3) over all possible choices for v, then we get

∑

v∈L
(S∪(Sc)(t+R))(t) (X)

µ([wv]) ≥

∑
v∈L

(S∪(Sc)(t+R))(t) (X) µ([v])
∣∣L(

S∪(Sc)(t+R)
)

�

(
S∪(Sc)(t+R)

)(t)(X)
∣∣ . (4)

Note that all wv are distinct, and for all wv, wv|S = u. Therefore,

⋃

v∈L
(S∪(Sc)(t+R))(t) (X)

[wv] ⊆ [u],

and so
∑

v∈L
(S∪(Sc)(t+R))(t) (X) µ([wv]) ≤ µ([u]). Since

⋃
v∈L

(S∪(Sc)(t+R))(t) (X)[v] = X,
∑

v∈L
(S∪(Sc)(t+R))(t) (X) µ([v]) = 1. By combining these facts with (4), we see that

µ([u]) ≥ 1∣∣L(
S∪(Sc)(t+R)

)
�

(
S∪(Sc)(t+R)

)(t)(X)
∣∣ .

We now bound µ([u]) from above. Choose any pattern v ∈ LS∪(Sc)(t)(X) with

v|S = u. We wish to use Corollary 4.5 with (Sc)(t) as our T . To do so, we need to

know that (S∪(Sc)(t))(t) ⊆ (Sc)(t) ⊆ S∪(Sc)(t). The second containment is trivial.

To prove the first, suppose that ~p ∈ (S ∪ (Sc)(t))(t). By definition, there then exists

~q /∈ S ∪ (Sc)(t) such that ‖~p − ~q‖∞ ≤ t. Since ~q /∈ S ∪ (Sc)(t), ~q ∈ Sc. Therefore,

since ‖~p− ~q‖∞ ≤ t, ~p ∈ (Sc)(t) by definition. We now apply Corollary 4.5:

µ([v]) =
µ([v((Sc)(t))])

|LS∪(Sc)(t)(X) ∩ [v((Sc)(t))]| (5)

We claim that ρ(S�S(R), (Sc)(t)) > R; choose any ~p ∈ S�S(R) and ~q ∈ (Sc)(t).

Clearly ~q ∈ Sc. If ‖~p − ~q‖∞ ≤ R, then ~p ∈ S(R), a contradiction. Thus,

‖~p − ~q‖∞ > R, and so ρ(S�S(R), (Sc)(t)) > R. This implies that for any

v ∈ LS∪(Sc)(t)(X) with v|S = u, and for any v′ ∈ LS�S(R)(X), there exists
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10 R. Pavlov

y ∈ LS∪(Sc)(t)(X) with y|(Sc)(t) = v|(Sc)(t) and y|S�S(R) = v′. Therefore,

|LS∪(Sc)(t)(X) ∩ [v|(Sc)(t) ]| ≥ |LS�S(R)(X)|. By using this fact and summing (5)

over all possible v, we get

∑

v∈L
S∪(Sc)(t) (X)∩[u]

µ([v]) ≤

∑
v∈L

S∪(Sc)(t) (X)∩[u] µ([v|(Sc)(t) ])

|LS�S(R)(X)| . (6)

Note that since all v are distinct,
⋃

v∈L
S∪(Sc)(t) (X)∩[u][v] = [u], and so

∑
v∈L

S∪(Sc)(t) (X)∩[u] µ([v]) = µ([u]). Also note that since all v are distinct, but all

have v|S = u, it must be the case that all v|(Sc)(t) are distinct, and so∑
v∈L

S∪(Sc)(t) (X)∩[u] µ([v((Sc)(t))]) ≤ 1. Combining these facts with (6), we see that

µ([u]) ≤ 1

|LS�S(R)(X)| ,

which, along with the lower bound on µ([u]) already achieved, completes the proof.

2

To avoid confusion, from now on µ̃ will be used to denote a measure of maximal

entropy on a subshift X, and µ to denote a measure which may or may not be of

maximal entropy.

Definition 4.7. For any d, any Zd subshift X, any ergodic measure µ on X, any

finite set of patterns u1 ∈ LS1
(X), u2 ∈ LS2

(X), . . . , uj ∈ LSj
(X), any k ∈ N and

any ǫ > 0, define Ak,ǫ,µ,u1,...,uj
(X) to be the set of patterns in LΓk

(X) which have

between kd(µ([ui]) − ǫ) and kd(µ([ui]) + ǫ) occurrences of ui for all 1 ≤ i ≤ j.

Lemma 4.8. For any d, any Zd subshift X, any ergodic measure µ on X, any finite

set of patterns u1 ∈ LS1
(X), u2 ∈ LS2

(X), . . . , uj ∈ LSj
(X), any k ∈ N and any

ǫ > 0, lim infk→∞
ln |Ak,ǫ,µ,u1,...,uj

(X)|
kd ≥ hµ(X).

Proof. For brevity, we will use the shorthand notation µ(Ak,ǫ,µ,u1,...,uj
(X))

for the measure of the union of all cylinder sets corresponding to patterns

in Ak,ǫ,µ,u1,...,uj
(X). Fix any ǫ > 0. Firstly, we notice that it is a

simple consequence of the pointwise ergodic theorem for Zd actions ([13]) that

limk→∞ µ(Ak,ǫ,µ,u1,...,uj
(X)) = 1.

We now write out the formula for the measure-theoretic entropy of X:

hµ(X) = lim
k→∞

1

kd

∑

u∈LΓn (X)

f(µ([u])),

where again f(x) = −x lnx for x > 0 and f(0) = 0. Partition LΓk
(X) into the two

pieces Ak,ǫ,µ,u1,...,uj
(X) and Ak,ǫ,µ,u1,...,uj

(X)c:

hµ(X) = lim
k→∞

( 1

kd

∑

u∈Ak,ǫ,µ,u1,...,uj
(X)

f(µ([u])) +
1

kd

∑

u′∈Ak,ǫ,µ,u1,...,uj
(X)c

f(µ([u′]))
)
.

Prepared using etds.cls



Perturbations of Multidimensional SFTs 11

To estimate each summand, we use the easily checkable fact that for any set of

nonnegative reals α1, α2, . . ., αj′ whose sum is β, the maximum value of
∑j′

i=1 f(αi)

occurs when all terms are equal, and is β ln j′

β
. Using this, we see that the above

sum is bounded from above by

1

kd

(
µ(Ak,ǫ,µ,u1,...,uj

(X)) ln
|Ak,ǫ,µ,u1,...,uj

(X)|
µ(Ak,ǫ,µ,u1,...,uj

(X))

)

+
1

kd

((
1 − µ(Ak,ǫ,µ,u1,...,uj

(X))
)
ln

|LΓk
(X)|

1 − µ(Ak,ǫ,µ,u1,...,uj
(X))

)
.

Since µ(Ak,ǫ,µ,u1,...,uj
(X)) approaches 1 and

ln |LΓk
(X)|

kd approaches htop(X) <

∞ as k → ∞, the second term approaches 0 as k → ∞. By replacing

µ(Ak,ǫ,µ,u1,...,uj
(X)) by 1 in the limit in the first term, we see that

hµ(X) ≤ lim inf
k→∞

1

kd
ln |Ak,ǫ,µ,u1,...,uj

(X)|,

which was exactly what needed to be shown.

2

Definition 4.9. For any d, any strongly irreducible Zd shift X of finite type t with

uniform filling length R, any ǫ > 0, and any positive integers k and M , define

Ak,ǫ,M (X) to be the set of patterns u in LΓk
(X) such that for every Si ⊆ ΓM and

every ui ∈ LSi
(X), u has between kd

(
1∣∣L

(Si∪(Sc
i
)(t+R))�(Si∪(Sc

i
)(t+R))(t) (X)

∣∣ − ǫ
)

and

kd
(

1
|L

Si�S
(R)
i

(X)| + ǫ
)

occurrences of ui ∈ LSi
(X).

Corollary 4.10. For any d, any strongly irreducible Zd shift X of finite type t

with uniform filling length R, any ǫ > 0, and any positive integer M ,

lim
k→∞

ln |Ak,ǫ,M (X)|
kd

= htop(X).

Proof. For any fixed µ̃ an ergodic measure of maximal entropy on X, Lemmas 4.6

and 4.8 show that

lim inf
k→∞

ln |Ak,ǫ,M (X)|
kd

≥ heµ(X) = htop(X).

And by the definition of topological entropy,

lim sup
k→∞

ln |Ak,ǫ,M (X)|
kd

≤ lim sup
k→∞

ln |LΓk
(X)|

kd
= htop(X).

2

Finally, we will eventually need the following lemma about strongly irreducible

systems, whose proof is standard.

Prepared using etds.cls



12 R. Pavlov

Lemma 4.11. For any d and any strongly irreducible Zd subshift X with uniform

filling length R and for any rectangular prism Pj1,j2,...,jd
, ehtop(X)j1j2···jd ≤

|LPj1,j2,...,jd
(X)| ≤ ehtop(X)(j1+R)(j2+R)···(jd+R).

Note that in particular, Lemma 4.11 implies that any strongly irreducible

subshift consisting of at least two points has positive topological entropy.

5. The proof of the upper bound in Theorem 1.2

We begin with a sketch of the proof of the upper bound of Theorem 1.2. For any

d > 1, consider a strongly irreducible Zd shift X of finite type t with uniform filling

length R containing more than one point, an integer n, and w ∈ LΓn
(X). For any

integer k much larger than n, we would like to define a map from LΓk+C
(X) to

LΓk
(Xw) (C is some constant independent of k) which replaces occurrences of w

with a pattern w̃ agreeing with w on the boundary of thickness t. (By the definition

of the type t ofX, this agreement ensures that when one performs such replacements

on a pattern in X, the resulting pattern is still in X.) We then wish to estimate

the sizes of preimages under this map to get an inequality relating |LΓk+C
(X)| and

|LΓk
(Xw)|, which upon taking logarithms and letting k → ∞ would give the desired

bound. We can make certain helpful assumptions about the patterns in which these

replacements take place (such as the approximate number of occurrences of w) by

using the results of Section 4.

There is a subtlety though; a replacement of w by w̃ in a pattern v can create

a new occurrence of w, i.e. an occurrence of w which was not present before the

replacement, but is afterwards. We would like to choose w̃ so that such occurrences

of w cannot be created, but this is impossible for some choices of w. We prove

a slightly weaker fact that is still sufficient for the purposes of proving the upper

bound in Theorem 1.2: for any large enough n and w ∈ LΓn
(X), there exist a

subpattern w′ ∈ LΓm
(X) with m not much smaller than n and w′′ 6= w′ with the

same shape Γm such that w′ and w′′ agree on Γ
(t)
m and such that a replacement of

w′ by w′′ can never create a new occurrence of w′. This weaker fact, plus a few

technical details, is Theorem 6.1, whose statement and proof we defer to Section 6.

We can then define a map φk : LΓk+C
(X) → LΓk

(Xw) by replacing occurrences of

w′ by w′′. (Such replacements can be used to get rid of all occurrences of w since w′

is a subpattern of w.) We then wish to get an upper bound on the size of preimages

φ−1
k (u) for all u ∈ LΓk

(Xw) in order to get an upper bound on
|LΓk+C

(X)|
|LΓk

(Xw)| , which

yields the desired upper bound on htop(X) − htop(Xw). However, we cannot get a

good enough upper bound of this sort for all u ∈ LΓk
(Xw). Instead, we consider the

restriction of φk to Ak+C,ǫ,3n(X) (Definition 4.9) for small ǫ, and then use bounds

on φ−1
k (u)∩Ak+C,ǫ,3n(X) for u ∈ LΓk

(Xw) to get an upper bound on
|Ak+C,ǫ,3n(X)|

|LΓk
(Xw)| .

Then taking the logarithm, dividing by k and letting k approach infinity gives an

upper bound on htop(X) − htop(Xw) by Corollary 4.10, which will approach the

upper bound from Theorem 1.2 as ǫ→ 0.

Remark 5.1. For the remainder of the paper, we will frequently talk about a cube
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of size m being “central” in another cube of size n > m. Obviously if m and n have

different parities, this is impossible. If this is the case, then the size of the inner

“central” cube is decreased by one. We will not comment on this subtlety when it

comes up in our proofs, as it quickly becomes unwieldy, and none of the bounds on

sizes of cubes that we work with are tight enough for these slight changes by 1 to

pose a problem.

We now begin the proof of the upper bound of Theorem 1.2. By Theorem 6.1

in Section 6, there exists N1 so that for any n > N1 and w ∈ LΓn
(X), there exist

m > n− n1− 1
4d , w′ a subpattern of w with shape Γm, and w′′ ∈ LΓm

(X) agreeing

with w′ on Γ
(t)
m such that replacing w′ by w′′ cannot create new occurrences of w′.

If we define ℓ = ℓ(n) =
⌈(

d ln n
htop(X)

) 1
d
⌉

+ 1, then w′ and w′′ actually agree outside

some copy U of Γ2R+ℓ which is contained in the central copy of Γ
3(2R+ℓ)⌈n1− 1

3d ⌉ in

Γm. Also, w′′|U contains a subpattern a ∈ LΓℓ
(X) which is not a subpattern of

w. We from now on will only consider n larger than N1, and for any such n and

w ∈ LΓn
(X), we use m, w′, w′′, U , a, and ℓ to denote the objects listed above

whose existence is guaranteed by Theorem 6.1. Denote by w̃ ∈ LΓn
(X) the pattern

obtained by replacing w′ by w′′ in w.

Definition 5.2. For any n > N1 and w ∈ LΓn
(X), two occurrences of the pattern

w′ which occur in copies S and S′ of Γm are said to be in undesirable position

if m
2 − 2n1− 1

4d ≤ ‖S − S′‖∞ < n.

We point out that there are fewer than 2dnd patterns (up to translation) which

are made up of a pair of w′ in undesirable position. This is because for a given

occurrence of w′, in order for another occurrence to be in undesirable position with

the first, it must be contained in a copy of Γ2n+m−2 concentric with the first, and

there are fewer than 2dnd distinct copies of Γm inside this copy of Γ2n+m. Call

these patterns u1, u2, . . . , ub, where b < 2dnd, and call Si the shape of ui for any

1 ≤ i ≤ b. Si is a union of two copies of Γm for all i.

Lemma 5.3. There exists N2 > N1 so that for any n > N2 and w ∈ LΓn
(X), if a

pattern v has no occurrences of any ui, then replacing an occurrence of w in v by

w̃ cannot yield a new occurrence of w in v.

Proof. For a contradiction, assume that for some w a particular replacement of w

by w̃ in v could create a new occurrence of w, i.e. that there exist v ∈ L(X) and S

and S′ copies of Γn such that v|S = w, v|S′ 6= w, and if we denote by v′ the pattern

obtained by replacing v|S by w̃, then v′|S′ = w.

We refer now to Figure 1. (All figures in this paper are drawn with d = 2, but

all constructions and descriptions are carried out in full generality.) In Figure 1,

T ⊂ S is a copy of Γm such that v|T = w′, U is the copy of Γ2R+ℓ within S outside

which v and v′ agree, T ′ is the copy of Γm in S′ corresponding to T in S, and A is

the copy of Γ
3(2R+ℓ)

⌈
n

1− 1
3d

⌉ central in S in which U must lie.

Since v|S = w does not contain a and v′|U contains a as a subpattern, S′ cannot

contain all of U . However, since v|S′ 6= w = v′|S′ , and v and v′ agree outside U , S′
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U

T
S

S’
T’

A

Figure 1. Intersecting occurrences of w

must have nonempty intersection with U . Since the replacement of w by w̃ cannot

possibly create a new occurrence of w′, T ′ must have already been filled with w′

before the replacement occurred, i.e. v|T ′ = w′. Since v|S = w, clearly v|T = w′ as

well.

We claim that v|T and v|T ′ were in undesirable position. Since U ⊆ A, and

since the size of A is 3(2R+ ℓ)
⌈
n1− 1

3d

⌉
, the distance in the ~ei-direction between the

center of U and the center of A is less than 3
2 (2R + ℓ)n1− 1

3d for each 1 ≤ i ≤ d.

A is central in S, so the center of A is the same as the center of S. Since T is a

subcube of S whose size is at most n1− 1
4d shorter, the distance in the ~ei-direction

between the center of S and the center of T is less than 1
2n

1− 1
4d for each 1 ≤ i ≤ d.

For the same reason, the distance in the ~ei-direction between the center of S′ and

the center of T ′ is less than 1
2n

1− 1
4d for each 1 ≤ i ≤ d. Finally, since U intersects

the boundary of S′, and since U has size 2R + ℓ, there exists 1 ≤ i ≤ d for which

the distance in the ~ei-direction between the center of S′ and the center of U is

between m
2 − (R + ℓ

2 ) and m
2 + (R + ℓ

2 ). Putting all of these facts together, we

see that there exists 1 ≤ i ≤ d so that the distance in the ~ei-direction between the

center of T and the center of T ′ is between m
2 − 3

2 (2R+ ℓ)n1− 1
3d −n1− 1

4d − (R+ ℓ
2 )

and m
2 + 3

2 (2R + ℓ)n1− 1
3d + n1− 1

4d + (R + ℓ
2 ). Clearly there exists N2 > N1 so

that for n > N2,
3
2 (2R+ ℓ)n1− 1

3d + (R+ ℓ
2 ) < n1− 1

4d , which would imply that this

distance would be between m
2 − 2n1− 1

4d and n, which would imply that v|T and

v|T ′ were indeed filled with occurrences of w′ in undesirable position, meaning that
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v|T∪T ′ = ui for some i, a contradiction. Therefore, there exists N2 > N1 so that

for n > N2, our original assumption was wrong, and so we are done.

2

For any n > N2, w ∈ LΓn
(X), and k > m, we define φk as a composition of

three maps: αk : LΓk+4m
(X) → LΓk+4m

(X), βk : αk(LΓk+4m
(X)) → LΓk+4m

(X),

and γk : (βk ◦ αk)(LΓk+4m
(X)) → LΓk

(Xw).

Given any u ∈ LΓk+4m
(X), αk(u) is defined by finding each occurrence of any

of the ui within u, and in each one, replacing the first lexicographically of the

two occurrences of w′ which make up ui by w′′. In order to make this operation

well-defined, we must specify an order for these replacements to be done in. First

perform the operation described above on the lexicographically first occurrence of

u1, then on the new lexicographically first occurrence of u1, and continue until no

u1 remain. Then perform the same procedure for u2, u3, etc. Since replacing w′

by w′′ can never create a new occurrence of w′, the resulting pattern, which we

define as αk(u), will contain no ui, i.e. will have no pair of occurrences of w′ in

undesirable position.

For any αk(u) ∈ αk(Γk+4m(X)), we define βk(αk(u)) by beginning with αk(u),

replacing the first occurrence of w lexicographically by w̃, then replacing the new

first occurrence of w lexicographically by w̃, and repeating this procedure. Since

αk(u) contained no ui, and since the replacements being made cannot create new w′,
after each of the replacements of w by w̃, the resulting pattern will still contain no ui.

Therefore, by Lemma 5.3, none of these replacements can create new occurrences

of w, and therefore this procedure will terminate in a pattern with no occurrences

of w, which we define to be (βk ◦ αk)(u).

The definition of γk is much simpler: for any (βk◦αk)(u) ∈ (βk◦αk)(LΓk+4m
(X)),

γk((βk ◦ αk)(u)) is the subpattern of (βk ◦ αk)(u) occupying its central copy of Γk.

For any u ∈ LΓk+4m
(X), we define φk(u) = (γk ◦ βk ◦ αk)(u).

Lemma 5.4. For any n > N2, w ∈ LΓn
(X), k > m, and u ∈ LΓk+4m

(X),

φk(u) ∈ LΓk
(Xw).

Proof. Fix any n > N2, w ∈ LΓn
(X), k > m, and u ∈ LΓk+4m

(X). We will

inductively define a sequence of patterns dj , where dj ∈ LΓk+4jm
(X) and each dj

has no occurrences of w. Define d1 = (βk ◦ αk)(u). For any dj , j > 0, define dj+1

as follows: since dj ∈ L(X), it can be extended to an infinite configuration in X.

Use this fact to create a pattern d′j ∈ LΓk+4(j+1)m
(X) which has dj as the pattern

occupying its central copy of Γk+4jm. We then define dj+1 = (βk+4jm◦αk+4jm)(d′j).
For the same reasons as above, dj+1 will then contain no occurrences of w. Since

dj+1 was obtained from d′j by making a series of replacements of w′ by w′′, and

since w′ and w′′ agree on their boundary of thickness t, dj+1 and d′j themselves

agree on their boundary of thickness t. Therefore, dj+1 ∈ L(X), completing the

inductive step and allowing us to define dj for all j. We also note that for any j,

since dj contained no occurrences of w or ui for any 1 ≤ i ≤ b, any occurrences of

these patterns in d′j must have nonempty overlap with the boundary of thickness
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2m of Γk+4(j+1)m. Therefore, any occurrences of these patterns in d′j is contained

entirely within its boundary of thickness 4m, and so dj+1 and dj must agree on their

respective central copies of Γk+4(j−1)m, since no replacements could have affected

that portion. This means that we may define the limit of the dj , call it x. Then x

has no occurrences of w and is therefore in Xw. Since all dj agree on their central

copies of Γk, and since φk(u) occupies the central copy of Γk in d1, φk(u) is a

subpattern of x, and so φk(u) ∈ LΓk
(Xw) as claimed.

2

By Lemma 5.4, for n > N2, φk is indeed a function from LΓk+4m
(X) to LΓk

(Xw).

For any ǫ > 0, we will consider the restriction of φk to Ak+4m,ǫ,3n(X). (Definition

4.9) The purpose of this is to bound from above the number of occurrences of w

and any ui in the patterns v that we apply φk to.

Lemma 5.5. There exists N3 > N2 so that for any n > N3, any w ∈
LΓn

(X), and any 1 ≤ i ≤ b, every element of Ak+4m,ǫ,3n(X) has fewer

than (k + 4m)d(e−htop(X)(n−2R)d

+ ǫ) occurrences of w and fewer than (k +

4m)d(e−1.4htop(X)nd

+ ǫ) occurrences of ui.

Proof. Fix any n > N2, w ∈ LΓn
(X), and v ∈ Ak+4m,ǫ,3n(X). Since the shape of w

is Γn ⊆ Γ3n, v has fewer than (k+4m)d( 1
|L

Γn�Γ
(R)
n

(X)|+ǫ) = (k+4m)d( 1
|LΓn−2R

(X)|+

ǫ) occurrences of w. By Lemma 4.11, |LΓn−2R
(X)| ≥ ehtop(X)(n−2R)d

, and so v has

fewer than (k + 4m)d(e−htop(X)(n−2R)d

+ ǫ) occurrences of w.

Since each ui has shape Si ⊆ Γ3n, v has fewer than (k+ 4m)d( 1
|L

Si�S
(R)
i

(X)| + ǫ)

occurrences of ui for each 1 ≤ i ≤ b. We wish to bound |L
Si�S

(R)
i

(X)| from below.

First, recall that Si is the union of two copies of Γm, so Si�S
(R)
i is the union of

two copies of Γm−2R concentric with the original copies of Γm. By the definition of

undesirable position, there exists 1 ≤ i ≤ d for which the distance in the ~ei-direction

between the centers of these two Γm−2R is not less than m
2 − 2n1− 1

4d .

In Figure 2, we denote the direction in question by ~ei, the two copies of Γm−2R

by S and S′, and the distance in the ~ei-direction between the centers of S and S′

by c. We then define T to be a rectangular prism which is a subset of S a distance

of R + 1 away from T ′. The sizes of T are m − 2R in every direction but ~ei, and

c−R ≥ m
2 − 2n1− 1

4d −R in the ~ei-direction.

Clearly, for large enough n, this dimension c−R of T is greater than m
2 −3n1− 1

4d .

Since T and S′ are a distance of R+1 away from each other and are subpatterns of

Si�S
(R)
i , |L

Si�S
(R)
i

(X)| ≥ |LT (X)||LS′(X)|, which is at least exp
(
htop(X)[(m −

2R)d−1(m
2 −3n1− 1

4d )+(m−2R)d]
)

by Lemma 4.11. R, t, and n1− 1
4d are all small in

relation to m for large enough n, and m
n
→ 1 as n→ ∞, so for large n, this bound

is greater than ehtop(X)1.4nd

. Therefore, there exists N3 > N2 so that for n > N3,

v has fewer than (k + 4m)d(e−1.4htop(X)nd

+ ǫ) occurrences of any ui for 1 ≤ i ≤ b.

2

For large n, we will now prove upper bounds on |α−1
k (v) ∩ Ak+4m,ǫ,3n(X)| for
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any v ∈ αk(LΓk+4m
(X)), on |β−1

k (v′)∩αk(Ak+4m,ǫ,3n(X))| for any v′ ∈ LΓk+4m
(X),

and on |γ−1
k (v′′)| for any v′′ ∈ LΓk

(Xw).

Lemma 5.6. There exists N4 > N3 so that for any n > N4 and w ∈ LΓn
(X),

there exist ǫn and kn for which, given any ǫ ∈ (0, ǫn), any k > kn, and any

v ∈ Ak+4m,ǫ,3n(X), |α−1
k (v) ∩Ak+4m,ǫ,3n(X)| ≤ exp((k + 4m)de−htop(X)(n−2R)d

).

Proof. Consider any n > N3, any w ∈ LΓn
(X), any v ∈ Ak+4m,ǫ,3n(X), and any u ∈

α−1
k (v)∩Ak+4m,ǫ,3n(X). Since b < 2dnd, Lemma 5.5 implies that the total number

of letters in u which are part of an occurrence of any ui is at most (2md)(2dnd)(k+

4m)d(e−1.4htop(X)nd

+ ǫ). There exists N3.5 > N3 so that for n > N3.5,

(2md)(2dnd)(k+4m)d(e−1.4htop(X)nd

+ǫ) < (k+4m)d(e−1.3htop(X)nd

+2d+1n2dǫ). So,

for any n > N3.5, u differs from v on less than (k+4m)d(e−1.3htop(X)nd

+2d+1n2dǫ)

letters. The number of u with this property is at most

|A|(k+4m)d(exp(−1.3htop(X)nd)+2d+1n2dǫ)

⌊(k+4m)d(exp(−1.3htop(X)nd)+2d+1n2dǫ)⌋∑

i=0

(
(k + 4m)d

i

)
. (7)

For any n, we define ǫn so small that 2d+1n2dǫn < e−1.3htop(X)nd

. Then, for large

enough n (say n > N3.75 > N3.5) and ǫ ∈ (0, ǫn), e−1.3htop(X)nd

+ 2d+1n2dǫ < 1
2 ,
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18 R. Pavlov

which implies that (7) is less than

|A|(k+4m)d(2 exp(−1.3htop(X)nd))(k + 4m)d ·
(

(k + 4m)d

⌊(k + 4m)d(2e−1.3htop(X)nd)⌋

)
. (8)

By Stirling’s formula, limn→∞
1
n

ln
(

n
nα

)
= −α lnα − (1 − α) ln(1 − α), which

is less than −2α lnα for any α < 1
2 . Therefore, for any n, we may

choose k
(1)
n so that for any k > k

(1)
n , 1

(k+4m)d ln
( (k+4m)d

⌊(k+4m)d(2e−1.3htop(X)nd )⌋
)
<

−2(2e−1.3htop(X)nd

) ln(2e−1.3htop(X)nd

) < 5.2htop(X)nde−1.3htop(X)nd

. We also

define k
(2)
n so that for any k > k

(2)
n , ln((k+4m)d)

(k+4m)d < e−1.3htop(X)nd

. Then, take

kn = max(k
(1)
n , k

(2)
n ). For any k > kn, (8) is less than

exp((k + 4m)de−1.3htop(X)nd

(2 ln |A| + 1 + 5.2htop(X)nd)), (9)

and clearly there exists N4 > N3.75 so that for any n > N4, (9) is less than

exp((k + 4m)de−htop(X)(n−2R)d

).

2

To prove the upper bound on βk-preimages, we first need a lemma about βk.

Lemma 5.7. For any n > N2, w ∈ LΓn
(X), and u ∈ αk(LΓk+4m

(X)), all copies of

Γn where replacements occur in changing u to βk(u) are disjoint.

Proof. Consider any n > N2, w ∈ LΓn
(X), and u ∈ αk(LΓk+4m

(X)). Consider any

pair of occurrences of w in u with nonempty intersection, say at S and S′ copies of

Γn. Clearly ‖S − S′‖∞ < n. Then these occurrences of w contain occurrences of

w′ as subpatterns, say at T and T ′ copies of Γm with T ⊂ S and T ′ ⊂ S′. Then

T − T ′ = S − S′, so ‖T − T ′‖∞ < n. Since u is in the image of αk, u has no

occurrences of any ui, and so u|T and u|T ′ are not in undesirable position. Also

define U to be the copy of Γ2R+ℓ in T which would be changed to change u|T to w′′,
and U ′ to be the corresponding copy of Γ2R+ℓ in T ′. Since ‖T −T ′‖∞ < n and u|T
and u|T ′ are not in undesirable position, ‖T − T ′‖∞ < m

2 − 2n1− 1
4d . Since n > N2,

3(2R+ ℓ)⌈n1− 1
3d ⌉ < 2n1− 1

4d , and so T contains the central copy of Γ
3(2R+ℓ)⌈n1− 1

3d ⌉
in S, implying that T contains U ′. Similarly, T ′ contains U . Therefore, if u|T is

replaced by w′′ sometime during the replacements defining βk, then u|S′ will be

changed to something other than w, and if u|T ′ is replaced by w′′ at some point in

these replacements, then u|S will be changed to something other than w. In other

words, in any replacement involved in changing u to βk(u), and any copy S of Γn,

if u|S is changed from w to w̃, then all occurrences of w with nonempty intersection

with S are also changed. Since new occurrences of w cannot be created during

these replacements, we have shown that the copies of Γn where replacements occur

in the application of βk must be disjoint.

2

Lemma 5.8. There exists N5 > N4 so that for any n > N5, w ∈ LΓn
(X),

k > m, ǫ > 0, and v′ ∈ LΓk+4m
(X), |β−1

k (v′) ∩ αk(Ak+4m,ǫ,3n(X))| ≤
2(k+4m)d(19d exp(−htop(X)(n−2R)d)+43dn2dǫ).
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Proof. We first show that there exists N4.5 > N4 so that for any n > N4.5 and

any w ∈ LΓn
(X), any period ~v of w′′ satisfies ‖~v‖∞ > m

2 − 3(2R+ℓ)⌈n1− 1
3d ⌉

2 . Define

N4.5 > N4 so that m
2 − 3(2R+ℓ)⌈n1− 1

3d ⌉
2 > n

3 and 3(2R + ℓ)⌈n1− 1
3d ⌉ < n

6 for all

n > N4.5.

Recall that for any n > N1 and w ∈ LΓn
(X), w′′ contains a as a subpattern

somewhere in its central copy of Γ
3(2R+ℓ)⌈n1− 1

3d ⌉, which we denote by A. Consider

any ~v with 3(2R + ℓ)⌈n1− 1
3d ⌉ ≤ ‖~v‖∞ ≤ m

2 − 3(2R+ℓ)⌈n1− 1
3d ⌉

2 . Since A is a central

subcube of Γm of size less than 3(2R + ℓ)⌈n1− 1
3d ⌉, A + ~v ⊆ Γm as well. If ~v is

a period of w′′, then w′′|A = w′′|A+~v, and so w′′|A+~v contains a. However, since

3(2R+ℓ)⌈n1− 1
3d ⌉ ≤ ‖~v‖∞, A+~v is disjoint from A, and therefore w′′|A+~v = w′|A+~v.

Since w′ is a subpattern of w, w′ contains no occurrences of a, and we have a

contradiction. If ‖~v‖∞ < 3(2R + ℓ)⌈n1− 1
3d ⌉, then we first note that if n > N4.5,

3(2R + ℓ)⌈n1− 1
3d ⌉ < n

6 and m
2 − 3(2R+ℓ)⌈n1− 1

3d ⌉
2 > n

3 . This means that there exists

a multiple r~v of ~v so that 3(2R+ ℓ)⌈n1− 1
3d ⌉ ≤ ‖r~v‖∞ ≤ m

2 − 3(2R+ℓ)⌈n1− 1
3d ⌉

2 . Then

r~v is a period of w′′ as well, and the previous argument again gives a contradiction.

Therefore, for n > N4.5, any period ~v of w′′ satisfies ‖~v‖∞ > n
3 .

Each of the replacements involved in αk and βk involves changing letters only

on a copy of Γm, and so could possibly create new occurrences of w̃ only inside a

copy of Γm+2n concentric with this copy of Γm. Since w′′ is a subpattern of w̃, any

period ~v of w̃ must also satisfy ‖~v‖∞ > n
3 . Therefore, any replacement of w′ by

w′′ in the replacements defining αk and βk results in fewer than 6d newly created

occurrences of w̃. We also point out that each of these replacements results in fewer

than (m+ n)d new occurrences of w as well. (This is because all such occurrences

of w are contained in the aforementioned copy of Γm+2n.)

Fix any u ∈ Ak+4m,ǫ,3n(X). Since n > N3, Lemma 5.5 implies that the total

number of occurrences of any ui in u is smaller than 2dnd(k+4m)d(e−1.4htop(X)nd

+

ǫ), and so the total number of replacements made in the application of αk to u

is also less than 2dnd(k + 4m)d(e−1.4htop(X)nd

+ ǫ). Since u itself had at most

(k + 4m)d(e−htop(X)(n−2R)d

+ ǫ) occurrences of w by definition of Ak+4m,ǫ,3n(X),

and since each replacement in the application of αk to u creates less than (m+n)d

new occurrences of w, αk(u) has less than (k + 4m)d(e−htop(X)(n−2R)d

+ ǫ) + (m+

n)d2dnd(k + 4m)d(e−1.4htop(X)nd

+ ǫ) occurrences of w. There exists N4.7 > N4.5

so that for n > N4.7, this is less than (k + 4m)d(2e−htop(X)(n−2R)d

+ 5dn2dǫ). This

means that for any such n, the number of replacements involved in changing αk(u)

to (βk ◦αk)(u) is less than (k+4m)d(2e−htop(X)(n−2R)d

+5dn2dǫ) as well. We from

now on assume that n > N4.7.

We now wish to bound from above the number of occurrences of w̃ in (βk ◦
αk)(u). u itself contains at most (k + 4m)d(e−htop(X)(n−2R)d

+ ǫ) occurrences

of w̃ by definition of Ak+4m,ǫ,3n(X). The total number of replacements made

in the application of αk to u is less than 2dnd(k + 4m)d(e−1.4htop(X)nd

+ ǫ),

and there exists N5 > N4.7 so that for any n > N5, this quantity is less than

(k+4m)d(e−htop(X)(n−2R)d

+2dndǫ). Each of these replacements can create at most
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6d new occurrences of w̃, and so at most (k + 4m)d(6de−htop(X)(n−2R)d

+ 12dndǫ)

occurrences of w̃ are added during these replacements. We showed above that

there are fewer than (k + 4m)d(2e−htop(X)(n−2R)d

+ 5dn2dǫ) replacements involved

in changing αk(u) to (βk ◦ αk)(u). Since each of these replacements can create

at most 6d new occurrences of w̃, the number of occurrences of w̃ created

during these replacements is less than (k+ 4m)d(2 · 6de−htop(X)(n−2R)d

+ 30dn2dǫ).

Collecting these facts, for n > N5 the total number of occurrences of w̃ created

in the process of changing u to (βk ◦ αk)(u) is less than (k + 4m)d((3 · 6d +

1)e−htop(X)(n−2R)d

+(1+12dnd +30dn2d)ǫ). This means that (βk ◦αk)(u) contains

less than (k + 4m)d(19de−htop(X)(n−2R)d

+ 43dn2dǫ) occurrences of w̃.

By Lemma 5.7, the set of copies of Γn on which replacements are performed in

the application of βk to αk(u) is pairwise disjoint. From this, it is clear that for any

u ∈ Ak+4m,ǫ,3n(X) and any S a copy of Γn which is the location of a replacement

involved in changing αk(u) to (βk ◦αk)(u), (βk ◦αk)(u)|S = w̃. In other words, once

w is changed to w̃ during the application of βk to αk(u), that occurrence of w̃ will

not be changed during future replacements. This means that knowing (βk ◦αk)(u),

along with knowing the locations of all copies of Γn where replacements occur in

changing αk(u) to (βk ◦ αk)(u), is enough to uniquely determine αk(u). Therefore,

for any n > N5 and v′ ∈ LΓk+4m
(X), |β−1

k (v′) ∩ αk(Ak+4m,ǫ,3n(X))| is less than or

equal to the total number of subsets of the locations of occurrences of w̃ in v′ which

could have been the locations of replacements in the application of βk, which is less

than or equal to 2(k+4m)d(19d exp(−htop(X)(n−2R)d)+43dn2dǫ).

2

Lemma 5.9. For any k > m, ǫ > 0, and v′′ ∈ LΓk
(Xw), |γ−1

k (v′′)| ≤
|A|(k+4m)d−kd

.

Proof. Fix v′′ ∈ LΓk
(Xw). Any u ∈ γ−1

k (v′′) must have its central copy of Γk filled

with v′′. This means that |γ−1
k (v′′)| ≤ |A|(k+4m)d−kd

.

2

Proof of the upper bound of Theorem 1.2. Choose any d > 1, X a strongly

irreducible Zd SFT with uniform filling length R containing more than one point,

n > N5, w ∈ LΓn
(X), k > kn, and ǫ < ǫn. For any v ∈ LΓk

(Xw), by Lemmas 5.6,

5.8, and 5.9,

|φ−1
k (v) ∩Ak+4m,ǫ,3n(X)| ≤ exp((k + 4m)de−htop(X)(n−2R)d

)·
2(k+4m)d(19d exp(−htop(X)(n−2R)d)+43dn2dǫ) · |A|(k+4m)d−kd

,

which is less than exp((k+ 4m)d(Ce−htop(X)(n−2R)d

+Dǫ)) for large enough k and

for constants C independent of n and k and D independent of k. This implies that

|LΓk
(Xw)| ≥ |Ak+4m,ǫ,3n(X)|

exp((k + 4m)d(Ce−htop(X)(n−2R)d +Dǫ))
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for sufficiently large k. We then take natural logarithms of both sides, divide by

(k + 4m)d, and let k → ∞ to get

lim
k→∞

kd

(k + 4m)d

ln |LΓk
(Xw)|

kd
≥ lim

k→∞

ln |Ak+4m,ǫ,3n(X)|
(k + 4m)d

−Ce−htop(X)(n−2R)d −Dǫ,

and by using the definition of topological entropy and Corollary 4.10, we are left

with

htop(Xw) ≥ htop(X) − Ce−htop(X)(n−2R)d −Dǫ.

We may let ǫ approach zero, which leaves

htop(X) − htop(Xw) ≤ C

ehtop(X)(n−2R)d
.

2

6. A replacement theorem

The goal of this section is to prove the following theorem, which was integral in

Section 5.

Theorem 6.1. For any d > 1 and any strongly irreducible Zd shift of finite type X

with uniform filling length R containing more than one point, there exists N1 such

that for any w ∈ LΓn
(X) with n > N1, there exist m > n − n1− 1

4d , a ∈ LΓℓ
(X)

(where ℓ = ℓ(n) =
⌈(

d ln n
htop(X)

) 1
d
⌉

+ 1), and w′, w′′ ∈ LΓm
(X) with the following

properties:

(i) w′ is a subpattern of w

(ii) a is not a subpattern of w

(iii) There is a copy U of Γℓ contained in the central copy of Γ
3(2R+ℓ)⌈n1− 1

3d ⌉ in Γm

such that w′′|U = a

(iv) w′ and w′′ agree outside the copy of Γ2R+ℓ in which U is central, and in

particular agree on Γ
(t)
m

(v) Replacing w′ by w′′ in any pattern v can never create a new occurrence of w′.

Fix d > 1, any strongly irreducible Zd shift of finite type X with uniform

filling length R containing more than one point, any n, and any w ∈ LΓn
(X).

By Lemma 4.11, htop(X) > 0. Define ℓ = ℓ(n) =
⌈(

d ln n
htop(X)

) 1
d
⌉

+ 1. Clearly, there

exists N0.5 so that if n > N0.5, then ℓ < n. We from now on consider only n > N0.5.

Then, |LΓℓ
(X)| is, by Lemma 4.11, at least ehtop(X)ℓd

> ed ln n = nd. This is greater

than the number of patterns with shape Γℓ which occur as subpatterns of w, and

so therefore there exists a pattern in LΓℓ
(X) which is not a subpattern of w. Fix

such a pattern, and call it a.

The general idea of the proof of Theorem 6.1 will be to first check whether

or not one can just take w′ = w. If so, then the proof is complete. If not, we
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will pass to a subpattern of w, and check whether it is possible to take w′ to be

this subpattern. Again, if so, then we are done. If not, then we again pass to

a subpattern. Lemma 6.5 below will show that as long as this continues, each of

these patterns is periodic on a much larger proportion than the previous, which

will imply that this procedure must terminate within a finite number (2d) of steps.

Fix any j ∈ [n
2 , n] and subpattern u ∈ LΓj

(X) of w. We define k = k(j) =

3(2R + ℓ)⌈j1− 1
3d ⌉. It is instructive to note that when n is large, k will always be

much smaller than j. Choose N0.75 > 5t so that for n > N0.75 and any j ∈ [n
2 , n],

j > 5k, and from now on assume that n > N0.75. Take a copy of Γk (call it A)

central in Γj , and partition it into
(
3⌈j(1− 1

3d
)⌉

)d
disjoint copies of Γ2R+ℓ. Consider

only the interior copies of Γ2R+ℓ in this partition, i.e. the ones which are disjoint

from the boundary of A. (There are more than 2djd− 1
3 such cubes.) For every one

of these cubes U , use strong irreducibility of X to define a standard replacement

associated to U to be any pattern u′ which agrees with u on Γj \U , and such that

the pattern a occupies the central copy of Γℓ in u′|U . To summarize: a occupies

a copy of Γℓ, which is contained in U a copy of Γ2R+ℓ, which is contained in A

a copy of Γk, which is contained in a copy of Γj occupied by a pattern u, which

is contained in Γn, the shape of w. Note that since j > 5k and j ≥ n
2 > 2.5t,

j > k + 2t, meaning that any standard replacement of u agrees with u on Γ
(t)
j .

Γ

a

shaded portion is filled in by
using strong irreducibility

R

R R

R

j

Figure 3. A standard replacement of u

Definition 6.2. A subpattern u of w has Property A if for every standard

replacement u′ of u, there exists a pattern v so that replacing u by u′ in v creates

a new occurrence of u.

Clearly, if we can find u a subpattern of w which is large enough and does not

have Property A, we will have proved Theorem 6.1. We will prove some general

periodicity facts about patterns with Property A, for which we will need some

definitions.
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Definition 6.3. A pattern u is purely periodic with period size p if there exist

positive integers pi ≤ p, 1 ≤ i ≤ d such that u is periodic with respect to pi~ei for

every i.

Definition 6.4. For any j, a suboctant of Γj is defined to be any copy of Γ j−3k
2

which shares a corner with Γj \ Γ
(k)
j and is contained in Γj \ Γ

(k)
j . A superoctant

of Γj is defined to be any copy of Γ j+k
2

which shares a a corner with Γj and is

contained in Γj .

O

k

k Γj

A

P

Figure 4. A suboctant P and superoctant O of Γj

We note that any of these objects has an obvious associated corner of Γj . (For

superoctants, this is the corner shared with Γj , and for suboctants, it is the closest

corner of Γj .)

Note that the existence of a standard replacement u′ of u with the property

that a replacement of u by u′ can create a new occurrence of u yields information

about periodicity of u. Say that the replacement occurs at Γj , and that the new

occurrence occupies S a copy of Γj . Define ~v := S−Γj . Then since Γj can be filled

with u′ while S is filled with u, and since u and u′ differ on only a very small set,

u must be very nearly periodic with respect to ~v. However, since the occurrence of

u at S did not exist before the replacement, u must not actually be periodic with

respect to ~v. The following lemma is just a stronger, more technical version of this

phenomenon.

Lemma 6.5. If n > N0.75, then for any j ∈ [n
2 , n] and any subpattern u ∈ LΓj

(X)

of w with Property A, there exists a suboctant P of Γj, contained in a superoctant

O of Γj, such that u|P is purely periodic with period size less than j
1
3 , but u|O is

not purely periodic with period size less than 2j
1
3 .

Proof. Fix a subpattern u ∈ LΓj
of w, and assume that u has Property A. Define

k = k(j) = 3(2R + ℓ)⌈j1− 1
3d ⌉ and denote by A the central copy of Γk in Γj as
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above. Then for every standard replacement u′ of u, there exists a copy of Γj

which overlaps Γj , and which could be filled with u at the same time that Γj is

filled with u′. We use M to denote the set (possibly with repetitions) of these

copies of Γj , and say that every S ∈M is associated to both the obvious standard

replacement u′ of u and to the copy of Γ2R+ℓ on which u′ and u disagree.

Since all standard replacements are created by changing u only on letters in a

particular copy of Γ2R+ℓ within Γj , it must be the case that every element of M

contains some portion of its associated copy of Γ2R+ℓ. (Otherwise, the supposed

“new” occurrence of u would have already existed before the replacement.) Also,

for every standard replacement u′, a is a subpattern of u′|A. Since a is not a

subpattern of u, none of the elements in M entirely contains its associated copy of

Γ2R+ℓ. We first make the claim that M contains no repeated elements, i.e. that

two distinct copies of Γ2R+ℓ must have distinct elements of M associated to them.

U V

j

S

Γ

Figure 5. An element S of M associated to two standard replacements

In Figure 5, suppose for a contradiction that S is associated to the standard

replacements corresponding to each of U and V , the two highlighted copies of

Γ2R+ℓ. This means that there exists a pattern v ∈ LΓj∪S(X) with v|S = u and

v|Γj
= u′, where u′ is a standard replacement of u associated to U . (This is

the pattern that appears after v|Γj
has been changed from u to u′, and a new

occurrence of u has appeared at S.) u and u′ must not agree on U ∩S; if they did,

then the occurrence of u in S would have already existed before the replacement.

Therefore, v|Γj\U = u|Γj\U and v|U∩S 6= u|U∩S . Similarly, there exists a pattern
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v′ ∈ LΓj∪S(X) with v′|S = u, v′|Γj\V = u|Γj\V , and v′|V ∩S 6= u|V ∩S . Since U

and V are disjoint, this implies that v|U∩S 6= u|U∩S and v′|U∩S = u|U∩S , and so

v|U∩S 6= v′|U∩S . But v|S = v′|S = u, and since U ∩ S ⊆ S we have a contradiction.

Now since there were more than 2djd− 1
3 standard replacements of u, we know

that M consists of more than 2djd− 1
3 distinct copies of Γj . Since every S ∈M has

nonempty intersection with Γj (and therefore contains some corner of Γj), there

is some corner ~q of Γj which is contained in more than jd− 1
3 of the copies of Γj

in M . Denote by ~r the opposite corner of Γj to ~q, and denote by O and O′ the

superoctants of Γj containing ~q and ~r respectively. We wish to show that it is not

true that both u|O and u|O′ are purely periodic with period sizes less than 2j
1
3 .

We assume for a contradiction that u|O and u|O′ are purely periodic with period

sizes less than 2j
1
3 , and without loss of generality, we assume that O is the least

superoctant lexicographically of Γj , i.e. ~q = ~1. (This is without loss of generality

because one can make this assumption simply by reflecting Γj several times, which

does not affect our proof.) Choose any S ∈ M containing ~q. In Figure 6, u|O is

purely periodic with periods qi~ei, u|O′ is purely periodic with periods ri~ei, and U

is the copy of Γ2R+ℓ on which u is changed to make the standard replacement of u

associated to S.

O jΓ

O’

r

q

C D

U

jA

E

S

Figure 6. An element S of M which contains ~q
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Note that u|O∪O′ is periodic with respect to qiri~ei for 1 ≤ i ≤ d, and that

qi, ri < 2j
1
3 . We have denoted by C the region (U ∩ S) + (Γj − S), i.e. C in Γj

corresponds to U ∩ S in S. Since ~q = ~1 ∈ S, the vector Γj − S has all nonnegative

entries. Therefore, since U ∩ S ∈ O′, C ⊂ O′ as well, and for all 1 ≤ i ≤ d, C

consists of points whose ith coordinate is between j − k+ 1 and j. We then choose

~u a multiple of qiri~ei such that C + ~u is also contained in O′ and U + ~u is a subset

of O which is disjoint from U . To do this, we need some multiple of qiri which is

greater than k, but still less than j−k
2 . We know that such a multiple exists since

qiri < 4j
2
3 , k > 4j

2
3 , and j−k

2 > 2k. (The last inequality is true since n > N0.75.)

Define D = C + ~u and E = (U ∩ S) + ~u. Since S ∈ M , there exists a pattern

y ∈ LΓj∪S(X) where y|S = u, and y|Γj
is a standard replacement for u such that

y|Γj\U = u|Γj\U and y|U∩S 6= u|U∩S . Since U ∩S in S corresponds to C in Γj , and

since y|S = u, it must be the case that y|U∩S = u|C . By periodicity of u|O′ with

respect to ~u, u|C = u|D. Since D in Γj corresponds to E in S, and since y|S = u,

u|D = y|E . Since y|Γj\U = u|Γj\U and E and U are disjoint, y|E = u|E . Finally, by

periodicity of u|O with respect to ~u, u|E = u|U∩S . But we have then shown that

y|U∩S = u|U∩S , a contradiction. Therefore, it is not the case that u|O and u|O′ are

purely periodic with period sizes less than 2j
1
3 .

Denote by P and P ′ the suboctants contained in O and O′ respectively. Recall

that ~q is the corner of Γj shared by Γj and O and ~r is the corner of Γj opposite

~q. It is clear upon observation that for any element S of M which contains ~q, the

corner of S corresponding to ~q in Γj must be contained in Γj . Fix any ~ei in Zd.

Γj can be partitioned into the jd−1 sets {~w +m~ei}0≤m<j where ~w ranges over all

~w ∈ Γj with ~wi = 1, and there are more than jd− 1
3 distinct points in Γj which are

corners of elements of M which correspond to ~q in Γj . By the pigeonhole principle,

this implies that one of the sets {~w + m~ei}0≤m<j contains more than j
2
3 of these

points. Again by the pigeonhole principle, this implies that there are two elements

of M which contain ~q, call them S and S′, such that S′−S is a multiple of ~ei whose

length is less than j
1
3 . We make the notation ~vi := S′ − S. We now claim that u|P

and u|P ′ are periodic with respect to ~vi. We assume without loss of generality that

~q = ~1 (meaning that ~r = j~1) and that ~vi is a negative multiple of ~ei.

In Figure 7, ~t is any point of Γj such that ~t+ ~vi is also in Γj , ~p is the corner of

S corresponding to ~r in Γj , and ~v′ = ~t− (~p+ ~vi). We define ~t′ to be ~r + ~v′, giving

us two new points ~t′ and ~t′ + ~vi. Since S, S′ ∈ M , each may be filled with u when

Γj is filled with the correct standard replacement of u. Denote by U the copy of

Γ2R+ℓ on which u is altered to make the standard replacement which allows S to

be filled with u, and by V the copy of Γ2R+ℓ on which u is altered to make the

standard replacement which allows S′ to be filled with u.

We will now show that if ~t,~t+ ~vi, ~t′, ~t′ + ~vi ∈ Γj \ (U ∪ V ), then u(~t) = u(~t+ ~vi)

and u(~t′) = u(~t′ + ~vi). Assume that ~t,~t + ~vi, ~t′, ~t′ + ~vi ∈ Γj \ (U ∪ V ). Then by

noting that S can be filled with u when Γj is filled with a standard replacement of

u which agrees with wj outside of U ∪ V , we can infer that u(~t) = u(~t′ + ~vi) (this

is because ~t ∈ S corresponds to ~t′ + ~vi ∈ Γj), and by noting that S′ can be filled

with u when Γj is filled with a standard replacement of wj which agrees with wj
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jΓ

q

t’+v

t+v

vi

r

P’
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p+v
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ei
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t’

p

t

i

i

i

Figure 7. Elements S, S′ of M whose difference ~vi is a multiple of ~ei

outside of U ∪ V , we can infer that u(~t) = u(~t′) and u(~t+ ~vi) = u(~t′ + ~vi). (This is

because ~t ∈ S′ corresponds to ~t′ ∈ Γj , and ~t+ ~vi ∈ S′ corresponds to ~t′ + ~vi ∈ Γj .)

This implies that u(~t) = u(~t+ ~vi) and u(~t′) = u(~t′ + ~vi).

We claim that if ~t,~t + ~vi ∈ P , then ~t′, ~t′ + ~vi ∈ Γj \ (U ∪ V ). Suppose that
~t,~t + ~vi ∈ P . Since S′ contains some portion of V , but does not contain all of V ,

it also holds that S′ contains some portion of A, but not all of A. Therefore, some

coordinate of ~p + ~vi is between j−k
2 + 1 and j+k

2 . The fact that S′ has nonempty

intersection with A also implies that all coordinates of ~p+ ~vi are between j−k
2 + 1

and j, since all coordinates of all elements of A are at least j−k
2 + 1. Since ~t ∈ P ,

every coordinate of ~t is between k+ 1 and j−k
2 . This implies that every coordinate

of ~v′ is nonpositive and at least −j + 1, and also that one coordinate of ~v′ is at

least − j−k
2 +1. Then, ~t′ = ~r+ ~v′ = j~1+ ~v′ is in Γj , and has one coordinate at least

j+k
2 + 1, and therefore does not lie in A, and so is not in U or V . Since ~t+ ~vi ∈ P ,

the same argument shows that ~t′ + ~vi is in Γj , but does not lie in U or V . Then,

since ~t,~t + ~vi, ~t′, ~t′ + ~vi ∈ Γj \ (U ∪ V ), by the previous paragraph, we know that

u(~t) = u(~t+ ~vi). Since this is true for any ~t,~t+ ~vi ∈ P , u|P is periodic with respect

to ~vi.

A similar argument shows that if ~t′, ~t′ + ~vi ∈ P ′, then ~t,~t + ~vi ∈ P , and is

left to the reader. Again, since ~t,~t + ~vi, ~t′, ~t′ + ~vi ∈ Γj \ (U ∪ V ), we know that

u(~t′) = u(~t′ + ~vi). Since this is true for any ~t′, ~t′ + ~vi ∈ P ′, u|P ′ is also periodic with

respect to ~vi.
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Since the above is true for all i, and since the length of ~vi is less than j
1
3 , u|P

and u|P ′ are purely periodic with period sizes less than j
1
3 . Clearly then one of the

pairs P,O or P ′, O′ satisfies the conditions of the lemma.

2

Proof of Theorem 6.1. Fix d > 1 and X a strongly irreducible Zd shift of finite

type with uniform filling length R containing more than one point. Choose

any n > N0.75 and w ∈ LΓn
(X). If w does not have Property A, then take

w′ = w, and we are done. So, we assume that w has Property A, and recall that

ℓ = ℓ(n) =
⌈(

d ln n
htop(X)

) 1
d
⌉

+ 1. Define N1 > max(24d, N0.75) so that n > N1 implies

4 · 2d+232d−1k(n) = 4 · 2d+232d

(2R+ ℓ)⌈n1− 1
3d ⌉ < n1− 1

4d . Assume that n > N1.

We will be inductively creating a sequence wj of subpatterns of w with shape Γnj
,

and will show that one of the first 2d must not have Property A. This construction

has two distinct steps. The first step is to take w1 a subpattern of w which is purely

periodic on a large central subcube.

By Lemma 6.5, there is a suboctant P of Γn, with associated corner ~q of Γn, such

that w|P is purely periodic with period size less than n
1
3 . Define m1 = 4·32d−1k(n).

Define B to be the copy of Γn−m1−k(n) which has ~q as a corner, and define

B′ = B \ B(k(n)). Take w1 to be the subpattern of w occupying B′. Then if

we define C1 to be the central copy of Γm1
in w1, then w1|C1

is a subpattern of

w|P , and is therefore purely periodic with period size less than n
1
3 . (The verification

of this is relatively straightforward, and we leave it to the reader.) w1 has shape

Γn1
, where n1 = n−m1 − 3k(n).

We will now follow a slightly different procedure to generate the subpatterns wj

of w for j > 1. First, define mj = 4 · 32d−jk(n) for 1 ≤ j ≤ 2d + 1. Suppose that

w1, w2, . . . , wj have all been defined, that j ≤ 2d, and that wj has Property A.

For 1 ≤ i ≤ j, denote by ni the size of wi, define ki = k(ni) = 3(2R + ℓ)⌈n1− 1
3d

i ⌉,
and denote the central copies of Γki

and Γmi
within Γni

by Ai and Ci respectively.

Since j ≤ 2d, mi ≥ ki and so Ai ⊆ Ci for 1 ≤ i ≤ j. Also, we claim that nj ≥ n
2

for all 1 ≤ j ≤ 2d (which is necessary to apply Lemma 6.5); this will be verified by

the end of the proof.

We need one last definition:

Definition 6.6. For any 1 ≤ j ≤ 2d, a j-hyperoctant of Γnj
is a subcube which

shares corners with both Γnj
and Cj , is contained in Γnj

, and contains Cj .

Note that since Ai ⊆ Ci for 1 ≤ i ≤ j ≤ 2d, every i-hyperoctant of Γni
contains

a unique superoctant of Γni
. For every 1 ≤ i ≤ j, denote by Ti the list of points

~ǫ ∈ {0, 1}d so that the restriction of wi to the i-hyperoctant containing the corner
~1 + (ni − 1)~ǫ of Γni

is purely periodic with period size less than n
1
3 . In a slight

abuse of notation, we will also refer to Ti as a list of i-hyperoctants of Γni
, using

the obvious correspondence between points in {0, 1}d and i-hyperoctants of Γni
.

Note that if we denote by Q1 the 1-hyperoctant of Γn1
containing the vertex of Γn1

closest to ~q in Γn, then w1|Q1
is a subpattern of w|P and is purely periodic with

period size less than n
1
3 . Therefore, T1 is nonempty.
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We will choose nj+1 and wj+1 ∈ LΓnj+1
(X) a subpattern of wj so that once one

defines Tj+1 in the obvious way, Tj+1 ) Tj . By Lemma 6.5, there is a suboctant

Pj of Γnj
so that wj |Pj

is purely periodic with period size less than n
1
3
j , and if

we denote by Oj the superoctant of Γnj
containing Pj , then wj |Oj

is not purely

periodic with period size less than 2n
1
3
j . (Since nj ≥ n

2 , this implies that wj |Oj

is also not purely periodic with period size less than n
1
3 .) Define Qj to be the

j-hyperoctant of Γnj
containing Oj ; clearly Qj /∈ Tj . Since the size mj of Cj is at

least 4k(n), and since kj = k(nj) ≤ k(n), Pj ∩ Cj is a cube whose size is at least
mj

3 = mj+1. Make the notation C ′
j+1 = Pj ∩ Cj . Define Bj+1 to be the largest

subcube of Γnj
so that C ′

j+1 is central in Bj+1, Pj is contained in Bj+1, and Pj

and Bj+1 share a corner. Denote the size of Bj+1 by nj+1, and the size of C ′
j+1 by

m′
j+1. Then m′

j+1 ≥ mj+1, so we can take C ′′
j+1 to be the copy of Γmj+1

central in

C ′
j+1 (and therefore in Bj+1 as well.)

jC j+1C’

j+1B Q
j+1j+1B

j
Γn

j

jA

P

QQ

Figure 8. Γnj and Bj+1

The reader may verify that nj+1 ≥ nj − (mj + kj). Define wj+1 = wj |Bj+1
.

To make the inductive construction work, we consider wj+1 to have shape Γnj+1

rather than the copy Bj+1, and denote by Cj+1 the subcube of Γnj+1
corresponding

to C ′′
j+1 in Bj . We can see from Figure 8 that for every j + 1-hyperoctant Q of

Γnj+1
, wj+1|Q is contained in wj | eQ for the corresponding j-hyperoctant Q̃ of Γnj

.

Therefore, if we define Tj+1 ⊆ {0, 1}2d

to be the set of j + 1-hyperoctants of wj+1

which are purely periodic with period size less than n
1
3 , then Tj+1 ⊇ Tj . Also, if

we denote by Qj+1 the j+1-hyperoctant of Γnj+1
corresponding to Qj in Γnj

, then

wj+1|Qj+1
is a subpattern of wj |Pj

, and so since wj |Pj
was purely periodic with

period size less than n
1
3
j , and since nj ≤ n, Qj+1 ∈ Tj+1. Since Qj /∈ Tj , this means

that |Tj+1| > |Tj |.
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Since |Tj | ≤ 2d for all j, and since T1 was nonempty by construction, it then

cannot be the case that w1, w2, . . . , w2d all have Property A. Denote by w′ the

first wj which does not have Property A. Then w′ is obtained by truncating w at

most 2d times, where the first truncation reduces the size by m1 + 3k(n), and the

jth truncation reduces the size by at most kj +mj ≤ m1 + 3k(n) for j > 1. Since

k(n) < m1, the size m of w′ is at least n− 2d(4m1) = n− 4 · 2d+232d−1k(n). Then

by our original assumption about the size of n, m > n−n1− 1
4d . (Since we assumed

n > 24d, this also shows that m > n
2 , and therefore that every nj is greater than n

2 ,

as claimed earlier.) Since w′ does not have Property A, there exists w′′ a standard

replacement of w′ such that replacing w′ by w′′ in some x ∈ X cannot possibly

create a new occurrence of w′. Thus, Theorem 6.1 is proved.

2

It is natural to wonder why we go to the trouble of dealing with subpatterns

in the statement of Theorem 6.1; i.e., is it possible, instead of dealing with the

intermediate step of taking a subpattern of w, to just choose w′ = w? The answer

is that there is an example of a strongly irreducible SFT X and arbitrarily large

patterns w ∈ L(X) for which this is impossible.

Proposition 6.7. For any d, there exists a strongly irreducible Zd SFT X with

the property that for any n > 1, there exists w ∈ LΓn
(X) such that for any

w′′ ∈ LΓn
(X) with w′′ 6= w, a replacement of w by w′′ could create a new occurrence

of w.

Proof. For any d and any n > 1, take X to be the full shift {0, 1}Zd

, and define

w ∈ LΓn
(X) by w(~1) = 1, and w(~v) = 0 if ~v ∈ Γn \ {~1}. We claim that for any

w′′ ∈ LΓn
(X), w′′ 6= w, there exists x ∈ X such that x|Γn

= w, and replacing x|Γn

by w′′ creates a new occurrence of w. Suppose that w′′ contains a 1, i.e. there

is some ~v ∈ Γn such that w′′(~v) = 1. Since w′′ 6= w, we can assume that ~v 6= ~1.

Consider x ∈ X defined by taking x(~1) = 1 and x(~v) = 0 for all other ~v ∈ Zd. Then,

x|Γn
= w. Create a new x′ ∈ X by replacing x|Γn

by w′′. Then, it is not hard to

check that x′|Γn+(~v−~1) = w, and that x|Γn+(~v−~1) is the pattern consisting of all 0s,

and so not equal to w. This means that the replacement involved in changing x

to x′ created a new occurrence of w. The only other possibility is that w′′ is the

pattern consisting of all 0s, i.e. w′′(~v) = 0 for all ~v ∈ Γn. If this is the case, then

define x ∈ X by taking x(0, 1, . . . , 1) = x(1, 1, . . . , 1) = 1 and x(~v) = 0 for all other

~v ∈ Zd. Again, x|Γn
= w. Create x′ ∈ X by replacing x|Γn

by w′′. Then, it is

not hard to check that x′|Γn− ~e1
= w, and that x|Γn− ~e1

had two 1s, and is thus not

equal to w. This means that in this case also, the replacement involved in changing

x to x′ created a new occurrence of w. 2

Proposition 6.7 shows that the extra step of taking the subpattern w′ of w in

Theorem 6.1 is in fact necessary. However, for a “typical” pattern w, there exists

a w′′ which has the desired replacement properties, without need of passing to a

subpattern.
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Proposition 6.8. For any d > 1 and any strongly irreducible Zd SFT X

containing more than one point, if for any n we denote by En(X) the set of patterns

w ∈ LΓn
(X) for which it is possible to take w′ = w in Theorem 6.1, then for any

ergodic measure µ̃ of maximal entropy on X, limn→∞ µ̃(En(X)) = 1.

Proof. Fix d > 1 and X a strongly irreducible Zd SFT with uniform filling length

R containing more than one point. We claim that for sufficiently large n, if w

does not contain any pair of equal disjoint subpatterns with shape Γ⌊√n⌋, then

w ∈ En(X). Consider any n and any w ∈ LΓn
(X) with the property just described.

Define ℓ = ℓ(n) =
⌈(

d ln n
htop(X)

) 1
d
⌉

+ 1, and create a standard replacement w′′ of w

by changing w only on a central copy of Γ2R+ℓ, which we denote by K. Then

w|Γn\K = w′′|Γn\K .

Suppose that w /∈ En(X). Then a replacement of w by w′′ could create a

new occurrence of w. Then there exist x ∈ X and copies T and T ′ of Γn such

that x|T = w, and if we define by x′ the element of X created by replacing

x|T by w′′, then x′|T ′ = w, but x|T ′ 6= w. This means that x′|T = w′′ and

x′|T ′ = w. Since the central copy of Γl in w′′ is occupied by a, this implies

that ‖T ′ − T‖∞ > n−ℓ
2 , or else x′|T ′ = w would contain this occurrence of

a. However, in order for x′|T ′ to be a newly created occurrence of w, T ′ must

have nonempty intersection with K + (T − Γn), and so ‖T ′ − T‖∞ < n+(2R+ℓ)
2 .

By this upper bound on ‖T ′ − T‖∞, T ∩ T ′ contains a cube of size at least
n−(2R+ℓ)

2 , which must, for large n, contain a copy of Γ⌊√n⌋ disjoint from the very

small sets K + (T − Γn) and K + (T ′ − Γn). Denote this copy of Γ⌊√n⌋ by U .

Since x′|T = w′′, x′|U = w′′|U−(T−Γn). Since U is disjoint from K + (T − Γn),

w′′|U−(T−Γn) = w|U−(T−Γn). Since x′|T ′ = w, x′|U = w|U−(T ′−Γn). Therefore,

w|U−(T−Γn) = w|U−(T ′−Γn). But, since ‖T ′ − T‖∞ > n−ℓ
2 , which is greater than√

n for sufficiently large n, U − (T − Γn) and U − (T ′ − Γn) are disjoint copies of

Γ⌊√n⌋, and so w contains equal disjoint subpatterns with shape Γ⌊√n⌋, which is a

contradiction.

Therefore, as long as w|S 6= w|T for any pair S and T of disjoint copies of Γ⌊√n⌋
in Γn, w ∈ En(X). This implies that

LΓn
(X) \ En(X) ⊆

⋃

~v∈LΓ⌊√n⌋ (X)

( ⋃

~u′∈[−n,n]d,‖~u′‖∞>
√

n

( ⋃

~u∈[−n,n]d

([v] ∩ ([v] + ~u′)) + ~u

))
. (10)

By Lemma 4.6, for any ~v ∈ LΓ⌊√n⌋(X), any ~u′ with ‖~u′‖∞ >
√
n, and any

ergodic measure of maximal entropy µ̃ on X,

µ̃([v] ∩ ([v] + ~u′)) ≤ 1∣∣∣L(
Γ⌊√n⌋∪(Γ⌊√n⌋+~u′)

)
\
(
Γ⌊√n⌋∪(Γ⌊√n⌋+~u′)

)(R)(X)
∣∣∣
.

Since ‖~u′‖∞ >
√
n,
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(
Γ⌊√n⌋ ∪ (Γ⌊√n⌋ + ~u′)

)
\

(
Γ⌊√n⌋ ∪ (Γ⌊√n⌋ + ~u′)

)(R)

=
(
(Γ⌊√n⌋) \ (Γ⌊√n⌋)

(R)
)
∪

((
(Γ⌊√n⌋) \ (Γ⌊√n⌋)

(R)
)

+ ~u′
)
.

Since ‖~u′‖∞ >
√
n, d

((
(Γ⌊√n⌋) \ (Γ⌊√n⌋)

(R)
)
,
(
(Γ⌊√n⌋) \ (Γ⌊√n⌋)

(R)
)

+ ~u′
)
>

√
n > R for sufficiently large n, and so by strong irreducibility,

∣∣∣L(
(Γ⌊√n⌋)\(Γ⌊√n⌋)(R)

)
∪
((

(Γ⌊√n⌋)\(Γ⌊√n⌋)(R)
)
+~u′

)(X)
∣∣∣

=
∣∣L(

(Γ⌊√n⌋)\(Γ⌊√n⌋)(R)
)(X)

∣∣2,

which is at least e2htop(X)(
√

n−2R)d

by Lemma 4.11. Combining this with shift-

invariance of µ̃ and (10), we see that

µ̃(LΓn
(X) \ En(X)) ≤ |LΓ⌊√n⌋(X)|(2n+ 1)2de−2htop(X)(

√
n−2R)d

.

Again by Lemma 4.11, |LΓ⌊√n⌋(X)| ≤ ehtop(X)(
√

n+R)d

. Therefore,

µ̃(LΓn
(X) \ En(X)) ≤ (2n+ 1)2de−htop(X)(2(

√
n−2R)d−(

√
n+R)d),

which clearly approaches zero as n→ ∞.

2

7. The proof of the lower bound in Theorem 1.2

We use a different tactic to prove a lower bound for htop(X) − htop(Xw). We in a

sense proceed in the opposite way from the proof of the upper bound: we will, for

k > n, define a map ψk which sends any pattern in LΓk
(Xw) to a subset of LΓk

(X)

such that for any u 6= u′ ∈ LΓk
(Xw), ψk(u) and ψk(u′) are disjoint.

The ψk-image of any u ∈ LΓk
(Xw) consists of patterns obtained by introducing

some occurrences of w into u. A natural way to define this map is by choosing

a pattern f ′ which agrees on the boundary of thickness t with w and replacing

occurrences of f ′ by w. We then choose an ergodic measure of maximal entropy

µ̃w on Xw, and for small ǫ, bound the size of images ψk(u) from below for all

u ∈ Ak,ǫ,eµw,f ′ . The disjointness of these images will yield a lower bound on
|LΓk

(X)|
|Ak,ǫ,eµw,f′ | , which will in turn yield the desired lower bound on htop(X)−htop(Xw)

as ǫ → 0 by Lemma 4.8. There are three issues with this approach which must be

addressed.

Firstly, new occurrences of w could be created in this process, which could cause

some problems with overcounting (two different patterns in LΓk
(Xw) could, after

performing some replacements of f ′ by w, become the same pattern.) This cannot

be avoided by passing to a subpattern of w; for example, if w is a block of 0s,

then any subpattern of w is also a block of 0s, and then any introduction of this
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subpattern could also introduce many new occurrences of itself. For this reason,

the pattern which we will introduce occurrences of is not w itself, but a pattern f

which consists of w surrounded by a “shell” which admits very few periods. (The

construction of this shell wo,d is a bit technical, and so is deferred to Section 8.)

Secondly, in order to bound |ψk(u)| from below for “typical” u, we need a lower

bound on the number of occurrences of f ′ in u. This necessitates a lower bound on

µ̃w([f ′]). The results of Section 4 are not useful for these estimates since the type

of Xw could be very large, maybe even equal to the size of w. We have no elegant

workaround for this problem, and instead will just choose f ′ to be any pattern

which has larger-than-average measure with respect to µ̃w.

Thirdly, if we wish to replace f ′ by f , then f ′ and f must agree on the boundary

of thickness t. However, we have no control over the boundary of thickness t of

f ′, so this would force the lower bound in Theorem 1.2 to depend on t. We would

like the bound to be independent of t, so we make a slight modification: f ′ will

be chosen to have size 2R larger than the size of f , and ψk will actually introduce

occurrences of f in central subcubes of occurrences of f ′. This way, no t need

appear.

Fix d > 1, X a strongly irreducible Zd shift of finite type t with uniform filling

length R containing more than one point, and define W = 8R + 14. Fix any

n > (3d − 3)W and w ∈ LΓn
(X). Take o to be the smallest integer such that

(o − 4)W > n + 2R. Then, (o − 4)W > (3d − 3)W , and so o ≥ 3d + 2. We also

define n′ = oW + 2R. By the definition of o, n′ ≤ n + 4R + 5W ≤ n + 44R + 70.

Take µ̃w to be any ergodic measure of maximal entropy on Xw. Since

∑

w′∈LΓ
n′ (Xw)

µ̃w([w′]) = µ̃w

( ⋃

w′∈LΓ
n′ (Xw)

[w′]

)
= µ̃w(Xw) = 1,

there must exist some pattern f ′ ∈ LΓn′ (Xw) such that µ̃w([f ′]) ≥ 1
|LΓ

n′ (Xw)| . We

note that since Xw ⊂ X, |LΓn′ (Xw)| ≤ |LΓn′ (X)|. By Lemma 4.11, |LΓn′ (X)| ≤
ehtop(X)(n′+R)d

. Therefore, µ̃w([f ′]) ≥ e−htop(X)(n′+R)d

.

In Figure 9, we show a pattern f ∈ LΓoW
(X) constructed as follows: Γ

(2W )
oW is

filled with wo,d as constructed in Theorem 8.1 in Section 8, and the central copy

of Γn is filled with w. The important property of wo,d is that if two copies of

wo,d overlap, their central (empty) portions of shape Γ(o−4)W are disjoint. The

remaining shaded portion is filled using strong irreducibility to create a pattern

f ∈ L(X).

We now describe our map ψk. Consider any k > n′ and u ∈ LΓk
(Xw). Denote

by K the number of occurrences of f ′ in u. We choose a set of disjoint occurrences

of f ′ using a simple algorithm: choose any occurrence of f ′ to begin, call it f ′(1).
Less than 2dn′d occurrences of f ′ overlap f ′(1), and so we choose any occurrence of

f ′ which does not overlap f ′(1), and call it f ′(2). Choose any occurrence of f ′ which

does not overlap f ′(1) or f ′(2) and call it f ′(3), and continue in this fashion. In this

way, we can choose a set Q of disjoint occurrences of f ′ in u, where |Q| ≥ K
2dn′d .

For any Q′ ⊆ Q, define a pattern u′Q′ as follows. For each occurrence of f ′ in Q′,
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ΓoWw
o,d

w

Figure 9. f

if its shape is U a copy of Γn′ , use strong irreducibility to replace the central copy

of Γn′−2R in U by f . Define ψk(u) = {u′Q′}Q′⊆Q. Then clearly |ψk(u)| ≥ 2
K

2dn′d .

Now, fix any ǫ > 0. We will consider the restriction of ψk to Ak,ǫ,eµw,f ′(Xw).

(Definition 4) For any u ∈ Ak,ǫ,eµw,f ′(Xw), K > kd(e−htop(X)(n′+R)d − ǫ), and so the

cardinality of ψk(u) is then greater than 2kd2−dn′−d(exp(−htop(X)(n′+R)d)−ǫ).

Lemma 7.1. For any u ∈ Ak,ǫ,eµw,f ′(Xw) and u′ ∈ ψk(u), u′|U = f for a copy U of

Γn′−2R if and only if U is centrally located in a copy of Γn′ on which a replacement

was made in changing u to u′.

Proof. Suppose for a contradiction that for some u ∈ Ak,ǫ,eµw,f ′(Xw) and u′ ∈ ψk(u),

u′ contains an occurrence of f which occupies a copy of Γn′−2R, which we call B′,
which was not central in a copy of Γn′ which was occupied by one of the replaced

occurrences of f ′ in u. Denote by B′′ the central copy of Γn of B′ and by B the

copy of Γn′ in which B′ is central. Then u′|B′′ = w. Since u ∈ L(Xw), u|B′′ 6= w.

This implies that one of the replacements made had nonempty intersection with B′′,
otherwise u|B′′ = u′|B′′ = w, a contradiction to the fact that u ∈ L(Xw). Choose a

copy of Γn′ where such a replacement was made, and denote it by C and its central

copy of Γn′−2R by C ′. By our hypothesis, B was not one of the replaced copies of

Γn′ , and so B 6= C. Since all of the replacements made were disjoint, u′|C′ = f .

We know that u′|B′ = f as well. Since C ∩B′′ 6= ∅, ‖B−C‖∞ ≤ n+ n′−n
2 = n′+n

2 .

However, n′+n
2 = n′−oW

2 + oW+n
2 . Since n′ = oW+2R, n′−oW

2 + oW+n
2 = R+ oW+n

2 .

It was part of the definition of o that (o − 4)W > n + 2R, so R < (o−4)W−n

2 .

Therefore, R + oW+n
2 < (o−4)W−n

2 + oW+n
2 = (o − 2)W . We have then shown

that ‖B − C‖∞ < (o − 2)W . Since B′ is central in B and C ′ is central in C,

B′ − C ′ = B − C and so ‖B′ − C ′‖∞ < (o − 2)W as well. We make one more

notation: denote E′ = B′(2W ) and F ′ = C ′(2W ). Since B 6= C, E′ 6= F ′. Then,

since u′|B′ = u′|C′ = f ′, u′|E′ = u′|F ′ = wo,d. Also, E′ − F ′ = B′ − C ′, so

‖E′−F ′‖∞ < (o− 2)W , which implies that E′ has nonempty intersection with the

central copy of Γ(o−4)W in F ′, a contradiction to the defining property of wo,d. Our

original assumption was then wrong, and u′|U = f only if U is centrally located in

a copy of Γn′ on which a replacement was made in changing u to u′.
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The converse is easy: since all replacements were disjoint, of course u′|U = f for

every U centrally located in a copy of Γn′ where a replacement was made.

2

Lemma 7.2. For any u, v ∈ Ak,ǫ,eµw,f ′(Xw), if u 6= v, then ψk(u) ∩ ψk(u′) = ∅.

Proof. Fix any k > n′ and ǫ > 0. Fix u ∈ Ak,ǫ,eµw,f ′(Xw) and u′ ∈ ψk(u). By

Lemma 7.1, u′ uniquely determines the set Q′ of occurrences of f ′ in u which were

replaced to make u′. However, trivially u = u′ outside of the occurrences of f ′ in Q,

and so u is uniquely determined by u′. This means that for u, v ∈ Ak,ǫ,eµw,f ′(Xw),

if u 6= v, then ψk(u) ∩ ψk(v) = ∅.

2

Proof of Theorem 1.2. For any u ∈ Ak,ǫ,eµw,f ′(Xw), we know that |ψk(u)| ≥
2kd2−dn′−d(exp(−htop(X)(n′+R)d)−ǫ). Then by Lemma 7.2,

|LΓk
(X)| > 2kd2−dn′−d(exp(−htop(X)(n′+R)d)−ǫ)|Ak,ǫ,eµw,f ′(Xw)|.

Take natural logarithms of both sides, divide by kd, and let k → ∞. By

Lemma 4.8 and the definition of topological entropy, this yields

htop(X) ≥ (ln 2)(2−dn′−d(e−htop(X)(n′+R)d − ǫ)) + htop(Xw).

Since ǫ was arbitrary, we allow it to approach zero, and so

htop(X) − htop(Xw) ≥ (ln 2)2−dn′−de−htop(X)(n′+R)d

.

Since d > 1, there exists N6 > N5 so that for n > N6, this is less than or equal

to

htop(X) − htop(Xw) ≥ e−htop(X)(n′+R+1)d

,

and by replacing n′ by its maximum possible value n+ 44R+ 70,

htop(X) − htop(Xw) ≥ 1

ehtop(X)(n+44R+71)d
.

Combining this with the already proven upper bound on htop(X) − htop(Xw),

we see that for n > N6,

1

ehtop(X)(n+44R+71)d
≤ htop(X) − htop(Xw) ≤ DX

ehtop(X)(n−2R)d
.

2
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8. The construction of wj,d

The main goal of this section is to prove the following theorem, which was necessary

in Section 7.

Theorem 8.1. For any d > 1, let X be a strongly irreducible Zd subshift with

uniform filling length R and more than one point, and let W = 8R+ 14. Then for

all sufficiently large j, there is a pattern wj,d ∈ L
Γ

(2W )
jW

(X) such that there cannot

exist two overlapping occurrences of wj,d where one has nonempty intersection with

the empty central copy of Γ(j−4)W in the other.

Figure 10. Disallowed (left) and allowed (right) pairs of overlapping wj,d

The outline of the proof of Theorem 8.1 is as follows. First, for any d > 1,

we construct a pattern bj,d with shape Γ
(2)
j on the alphabet {0, 1} with a similar

property to the one wj,d has in the statement of Theorem 8.1. We will then use

bj,d to construct wj,d by “blowing up” bj,d by a factor of W , i.e. using each letter

in bj,d to determine a pattern occupying a copy of ΓW in wj,d. For this, we need

two types of patterns in LΓW
(X), to correspond to 0s and 1s in bj,d. We do this by

finding a small pattern y ∈ L(X) so that Xy is nonempty, and then 0s and 1s in bj,d
correspond to patterns in LΓW

(X) with no occurrences of y, and many occurrences

of y, respectively.

The first step in the construction of bj,d is the construction of an aperiodic

pattern aj,d−1.

Lemma 8.2. For any fixed d and j ≥ 3d+ 5, there exists an aperiodic pattern aj,d

in {0, 1}Γj .

Proof. Fix any d and j ≥ 3d + 5. For any ~p ∈ Γj , define aj,d(~p) = 1 if for some

1 ≤ i ≤ d − 1, pi /∈ {1, j}. This leaves only aj,d(~p) where each of p1, p2, . . . , pd−1

are 1 or j to be defined. We think of this undefined portion as a set of 2d−1 one-
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dimensional patterns of length j: for every (p1, p2, . . . , pd−1) ∈ {1, j}d−1, we think

of the yet-to-be-defined aj,d(p1, p2, . . . , pd−1, 1), aj,d(p1, p2, . . . , pd−1, 2), . . . ,

aj,d(p1, p2, . . . , pd−1, j) as the letters of a j-letter pattern. Now, to fill in these

portions, we define 2d−1 j-letter patterns, which we will call h0, h1, . . . , h2d−1−1.

We do this in the following way: the first four letters of any hi are defined to be

0001, and the final four letters are defined to be 0111. The 3d−3 letters following the

initial 0001 in any hi are defined as follows: concatenate d−1 three-letter patterns,

determined by i’s d − 1-digit binary expansion: each 0 in the binary expansion

corresponds to the pattern 001, and each 1 in the binary expansion corresponds

to 011. The remaining j − (3d + 5) letters of hi which precede the final 0111 are

alternating 0s and 1s, beginning with a 0.

An example should be helpful: suppose that d = 3 and j = 18. Then we

create four 18-letter patterns h0, h1, h2, and h3. The initial four letters of h0

are 0001. The next 3d − 3 = 6 letters are dependent on the two-digit binary

expansion of the subscript 0: since it is 00, the next six letters are 001001. The next

j − (3d+ 5) = 4 letters are alternating 0s and 1s beginning with a 0, i.e. 0101, and

the final four letters are 0111. This gives h0 = 000100100101010111. Using similar

reasoning, we see that h1 = 000100101101010111, h2 = 000101100101010111, and

h3 = 000101101101010111.

We claim that the patterns h0, h1, . . . h2d−1−1 have the property that no two may

overlap each other, i.e. if the final k letters of hi are equal to the initial k letters

of hi′ for some k > 0, then k = j and i = i′. Suppose not; then for some k > 0

and 0 ≤ i, i′ < 2d−1, the initial k letters of hi are the same as the final k letters of

hi′ . If k ∈ {1, 2}, then the first k letters of hi are 0 or 00, which cannot be the case

since hi′ does not end with either of those patterns. So, k ≥ 3. Then the initial k

letters of hi begin with 000, and since the only place that 000 occurs in hi′ is at

the beginning, this implies that k = j, and since {hi}2d−1−1
i=0 contains 2d−1 distinct

patterns, that i = i′.

Define any bijection υ from {1, j}d−1 to [0, 2d−1−1], and for any ~p = (p1, p2, . . . ,

pd−1) ∈ {1, j}d−1, define aj,d(p1, p2, . . . , pd−1, i
′) = hυ(~p)(i

′) for 1 ≤ i′ ≤ j. We

now make the claim that aj,d is aperiodic. Suppose not; then there exists ~v with

‖~v‖∞ < n such that aj,d(~r) = aj,d(~r + ~v) for all ~r ∈ Γj such that ~r + ~v ∈ Γj .

Since −~v is also a period of aj,d, we may assume without loss of generality that

vd ≥ 0. We choose a corner ~q of Γj based on ~v: for each 1 ≤ i ≤ d, if vi ≥ 0,

qi = 1. If vi < 0, qi = j. In this way, we ensure that ~q + ~v ∈ Γj , and therefore that

aj,d(~q) = aj,d(~q+~v). Since qi ∈ {1, j} for 1 ≤ i ≤ d− 1 and qd = 1, by construction

aj,d(~q) = 0. Therefore, aj,d(~q + ~v) = 0. However, again due to construction, the

only 0s in aj,d lie at points whose first d − 1 coordinates are either 1 or j. This

implies that the first d− 1 coordinates of ~q+~v are either 1 or j. Let’s denote by hi

the j-letter pattern where hi(k) = aj,d(~q + (k − 1)~ed) for 1 ≤ k ≤ j, and by hi′ the

j-letter pattern where hi′(k) = aj,d(~q + ~v + (k − 1 − vd)~ed). Due to the supposed

periodicity of aj,d, the first j − vd letters of hi are the same as the final j − vd

letters of hi′ . Since no two distinct patterns in {hn}2d−1

n=1 may overlap, vd = 0 and

hi = hi′ . This implies that the first d− 1 coordinates of ~q are the same as the first
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d − 1 coordinates of ~q + ~v, and therefore that the first d − 1 coordinates of ~v are

zero, implying that ~v = 0, a contradiction. Thus, aj,d is aperiodic.

2

Lemma 8.3. For any d > 1 and any j ≥ 3d + 2, there exists a pattern bj,d ∈
{0, 1}Γ

(2)
j with the property that there cannot exist two overlapping occurrences of

bj,d such that one has nonempty intersection with the central copy of Γj−2 in the

other.

Proof. We use aj,d−1 as a tool to create bj,d. We define bj,d(~p) = 0 if pd = 1 or 2,

and bj,d(~p) = 1 if 3 ≤ pd ≤ j − 1. If pd = j, then bj,d(~p) = aj,d−1(p1, . . . , pd−1).

Suppose that bj,d does not have the property claimed in Lemma 8.3. Then bj,d has

a period ~v with ‖v‖∞ ≤ j− 2. We can again assume without loss of generality that

vd ≥ 0. Choose a point ~q of Γ
(2)
j as follows: for each 1 ≤ i ≤ d − 2, take qi = 1

if vi ≥ 0, and qi = j − 1 if vi < 0. Choose qd−1 = j − 1 − vd−1 if vd−1 ≥ 0, and

qd−1 = 1 − vd−1 if vd−1 < 0. Finally, take qd = 1. For any ~r ∈ Zd all of whose

coordinates are zero or one, the first d− 1 coordinates of ~q + ~r are between 1 and

j, and the dth coordinate is 1 or 2, implying that ~q + ~r ∈ Γ
(2)
j . This means that

a copy of Γ2 with its least corner lexicographically at ~q is a subset of Γ
(2)
j , call it

S. Since S is composed entirely of points whose dth coordinate is 1 or 2, bj,d|S is

filled with 0s. Again, for any point ~r all of whose coordinates are zero or one, the

first d − 2 coordinates of ~q + ~v + ~r are between 1 and j, the (d − 1)th coordinate

of ~q + ~v + ~r is 1, 2, j − 1, or j, and the dth coordinate of ~q + ~v + ~r is between 1

and j. Therefore, any such ~q + ~v + ~r is in Γ
(2)
j , implying that a copy S + ~v of Γ2

with its least corner lexicographically at ~q + ~v is a subset of Γ
(2)
j as well. By the

supposed periodicity of bj,d with respect to ~v, bj,d|S+~v must be filled with 0s as well.

However, by construction, for any copy of Γ2 which is filled with 0s in bj,d, the dth

coordinate of its least corner lexicographically is 1. Since qd = 1, it must be the

case that vd = 0. This implies that aj,d−1 is periodic with period (v1, v2, . . . , vd−1).

Since aj,d−1 is aperiodic by Lemma 8.2, vi = 0 for 1 ≤ i ≤ d − 1 as well, and so

~v = ~0, a contradiction. Therefore, bj,d has the claimed property.

2

These constructions have both been about patterns in the full shift on two

symbols. We must now turn to our SFT X. First, we will be constructing a

pattern y ∈ LΓ3R+7
(X) for which Xy is nonempty. Obviously, finding a pattern y

such that Xy is nonempty could be done by using the already proven upper bound

for htop(X) − htop(Xy), but this may require y to have shape with large size. We

would like the shape of y to have a small size to prove as tight a lower bound as

possible in Theorem 1.2. We first need two preliminary results.

Lemma 8.4. For any d and n, define Hn,d = {~v ∈ Γ2n+1 − n~1 : ~v is less than ~0

lexicographically}, Gn,k,d = {~v ∈ Zd : vi > 0 for 1 ≤ i ≤ d,
∑d

i=1 n
i−1vi ≤ k}, and

Kn,k,d = (Γk+n −n~1)�Γk. For any d and n, if X is a Zd subshift such that x|Hn,d

forces x(~0) for all x ∈ X, then x|Kn,k,d
forces x|Gn,k,d

for any k and all x ∈ X.
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Proof. As this is the only place in the paper where the dimension d of a cube

may not be clear, for this proof we adopt the notation Γn,d for the cube Γn with

dimension d. We also define In,d = {~v ∈ (Γ2n+1,d − n~1) : vd < 0} for any n, d.

We quickly note a few useful facts about these sets which can be checked by the

reader: Hn,d+1 = In,d ∪ (Hn,d × {0}), and Gn,k,d+1 =
⋃⌊ k

nd ⌋
i=1 (Gn,k−ind,d × {i}).

The proof will be by induction on d. For d = 1, Lemma 8.4 is fairly easy to check

(and is in fact a classical theorem due to Hedlund and Morse ([4])); it amounts

to showing that if any n consecutive letters of any x force the next, then any n

consecutive letters of x force the next k for any k. But this is clear; if x|[1,n] forces

x(n + 1), then x|[2,n+1] forces x(n + 2), and we can proceed like this indefinitely.

Thus, Lemma 8.4 is proven for d = 1. Now suppose that it is true for a fixed d,

and we will prove it for d+ 1.

Suppose that X is a Zd subshift such that x|Hn,d+1
forces x(~0) for all x ∈ X. Fix

any x ∈ X. We wish to show that x|Kn,k,d+1
forces x|Gn,k,d+1

. Since Gn,k,d+1 =
⋃⌊ k

nd ⌋
i=1 (Gn,k−ind,d×{i}), it suffices to show that x|

Kn,k,d+1∪
Sj

i=1(Gn,k−ind,d
×{i}) forces

x|G
n,k−(j+1)nd,d

×{j+1} for every 0 ≤ j < ⌊ k
nd ⌋. Fix any 0 ≤ j < ⌊ k

nd ⌋, and suppose

that x|
Kn,k,d+1∪

Sj
i=1(Gn,k−ind,d

×{i}) is given. We will show that x|G
n,k−(j+1)nd,d

×{j+1}
is forced.

Consider any ~v = (~v′, j + 1) ∈ Gn,k−(j+1)nd,d × {j + 1}. We first claim that

~v + In,d+1 ⊆ Kn,k,d+1 ∪ ⋃j
i=1(Gn,k−ind,d × {j}). Since In,d+1 = (Γ2n+1,d − n~1) ×

[−n,−1], it suffices to show that ~v′+(Γ2n+1,d−n~1) ⊆ (Kn,k,d+1∪
⋃j

i=1(Gn,k−ind,d×
{j})) ∩ (Zd × {i}) for any i ∈ [j − n+ 1, j].

Since (Kn,k,d+1 ∪
j⋃

i=1

(Gn,k−ind,d × {j})) ∩ (Zd × {i}) =

{
(Kn,k,d ∪ Γk,d) × {i} if − n+ 1 ≤ i ≤ 0

(Kn,k,d ∪Gn,k−ind,d) × {i} if i > 0,

and since Gn,k−(i+1)nd,d ⊆ Gn,k−ind,d ⊆ Γk,d for all i > 0, it suffices to show that
~v′ + (Γ2n+1,d − n~1) ⊆ Kn,k,d ∪Gn,k−jnd,d.

Consider any ~u ∈ Γ2n+1,d − n~1. By definition of Gn,k−(j+1)nd,d,
∑d

i=1 v
′
in

i−1 ≤
k − (j + 1)nd, and v′i > 0 for 1 ≤ i ≤ d. By choice of ~u, −n ≤ ui ≤ n for

1 ≤ i ≤ d. Therefore, −n < (~v′ + ~u)i for 1 ≤ i ≤ d, and
∑d

i=1(
~v′ + ~u)in

i−1 ≤
(k−(j+1)nd)+(

∑d−1
i=1 n

i) < k−jnd. There are then two cases; if any coordinate of
~v′+~u is nonpositive, then ~v′+~u ∈ Kn,k,d, and if all coordinates are positive, then by

definition, ~v′+~u ∈ Gn,k−jnd,d. So, indeed ~v′+(Γ2n+1,d−n~1) ⊆ Kn,k,d∪Gn,k−jnd,d.

As argued above, this means that ~v + In,d+1 ⊆ Kn,k,d+1 ∪
⋃j

i=1(Gn,k−ind,d × {i})
for any ~v ∈ Gn,k−(j+1)nd,d × {j + 1}.

Since Hn,d+1 = In,d+1 ∪ (Hn,d × {0}), and since x|
Kn,k,d+1∪

Sj
i=1(Gn,k−ind,d

×{i})
has been given, we can then conclude that for any ~v ∈ (Gn,k−(j+1)nd,d × {j + 1}),
x|~v+(Hn,d×{0}) forces x(~v). But then by the inductive hypothesis, x|G

n,k−(j+1)nd,d
×

{j+1} is forced by x|K
n,k−(j+1)nd,d+1

×{j+1}, and since Kn,k−(j+1)nd,d×{j+1} ⊂
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Kn,k,d+1, x|G
n,k−(j+1)nd,d

× {j + 1} is forced by x|
Kn,k,d+1∪

Sj
i=1(Gn,k−ind,d

×{i}) as

well. Since j was arbitrary here, as described above this shows that x|Kn,k,d+1
forces

x|Gn,k,d+1
. Since x ∈ X was arbitrary, we have verified the inductive hypothesis for

d+ 1, and so we are done.

2

Proposition 8.5. For any d, any Zd subshift X with htop(X) > 0, and any finite

S ⊂ Zd, |LS(X)| > |S|.

Proof. We write S = {~s1, ~s2, . . . , ~s|S|} where ~si comes before ~si+1 in the usual

lexicographical order for 1 ≤ i < |S|, and make the notation Si = {~s1, . . . , ~si}
for all 1 ≤ i ≤ |S|. Suppose for a contradiction that |LS(X)| ≤ |S|. Since

htop(X) > 0, |LS1
(X)| > 1. It must then be the case that for some 1 ≤ j < |S|,

|LSj+1
(X)| ≤ |LSj

(X)|. Since Sj ⊂ Sj+1, this means that for every pattern

w ∈ LSj
(X), there is a unique way to extend it to a pattern in LSj+1

(X). In

other words, for any x ∈ X, x|Sj
forces x( ~sj+1). By shift-invariance of X, for any

x ∈ X, x|Sj− ~sj+1
forces x(~0). Since T := Sj − ~sj+1 is finite, take N > diam(T ).

Then, T consists of elements of Zd within a d-distance of less than N from ~0 and

lexicographically less than ~0. It is then clear that T ⊆ HN,d, and so we note that

x|HN,d
forces x(~0).

Then by Lemma 8.4, x|KN,k,d
forces x|GN,k,d

for all k and any x ∈ X. This

means that |LGN,k,d
(X)| ≤ |LKN,k,d

(X)| for any k. Note that Γ⌊ k

dNd ⌋ ⊆ GN,k,d for

all k. Therefore, |LΓn
(X)| ≤ |LG

N,ndNd,d
(X)| ≤ |LK

N,ndNd,d
(X)| for all n. Since

|KN,ndNd,d| = (ndNd +N)d − (ndNd)d ≤ 2Nd(ndNd)d−1 = Cnd−1 for large n and

a constant C independent of n, we see that |LΓn
(X)| ≤ |A|Cnd−1

for all large n,

and so by the definition of topological entropy, htop(X) = limn→∞
ln |LΓn (X)|

nd ≤
lim supn→∞

Cnd−1 ln |A|
nd = 0. Therefore, htop(X) = 0, a contradiction to the

hypotheses of the theorem. Our initial assumption was therefore wrong, and so

|LS(X)| > |S| for all finite shapes S.

2

Lemma 8.6. For any d > 1 and any strongly irreducible Zd SFT X with uniform

filling length R containing more than one point, there exists y ∈ LΓ3R+7
(X) so that

Xy 6= ∅.

Proof. Fix d > 1 and a strongly irreducible Zd SFT X containing more than one

point. By Lemma 4.11, htop(X) > 0. Define S1 = {1, 2} × {1, 2, . . . , R + 4}d−1 ⊂
ΓR+4 and S2 = {R+ 3, R+ 4}× {1, 2, . . . , R+ 4}d−1 ⊂ ΓR+4. Then ρ(S1, S2) > R,

and so by strong irreducibility, |LΓR+4
(X)| ≥ |LS1

(X)||LS2
(X)|, which is greater

than 4(R+ 4)2d−2 by Proposition 8.5. Since R+ 4 ≥ 4,

4(R+ 4)2d−2 ≥ 4d−1(R+ 4)d ≥ 2d(R+ 4)d = (2R+ 8)d > (2R+ 4)d.

Therefore, |LΓR+4
(X)| > (2R + 4)d. Consider any y ∈ LΓ3R+7

(X). Since there

are (2R + 4)d copies of ΓR+4 contained in Γ3R+7, there are at most (2R + 4)d
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different patterns in LΓR+4
(X) which are subpatterns of y. Therefore, there exists

z ∈ LΓR+4
(X) such that z is not a subpattern of y. Then, again by using strong

irreducibility, we can construct x ∈ X such that for any ~v ∈ Zd, x|ΓR+4+(2R+4)~v = z.

(See Figure 11.) Then, for any S a copy of Γ3R+7, x|S contains a z, and therefore

x|S 6= y. Thus, y is not a subpattern of x, and so Xy contains at least one point

and is nonempty.

3R+7
Γcopies of 

R+1

R+3

z

z

z

z z

z

z

z z

z

z

z z

z

z

z

R+3 R+1

Figure 11. A point x ∈ Xy

2

Proof of Theorem 8.1. Fix d > 1, a strongly irreducible Zd subshift X with uniform

filling length R containing more than one point, and j ≥ 3d+2. Let W = 8R+14.

We will use y and bj,d to create wj,d. To do this, we first partition Γ
(2W )
jW into

disjoint copies of ΓW . The disjoint copies of ΓW then have an obvious bijective

correspondence to the points of Γ
(2)
j , illustrated in Figure 12.

Figure 12. The correspondence between copies of ΓW in Γ
(2W )
jW

and points in Γ
(2)
j
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We then use each entry of bj,d to assign entries of wj,d in the corresponding copy

of ΓW in Γ
(2W )
jW . For ~p ∈ Γ

(2)
j , if bj,d(~p) = 0, then the lexicographically least copy

of ΓW−R in the ΓW corresponding to ~p is filled with any pattern in LΓW−R
(Xy),

which clearly contains no occurrences of y. If bj,d(~p) = 1, then the lexicographically

least copy of ΓW−R in the ΓW corresponding to ~p has 2d occurrences of y placed

inside it, each one sharing a corner with it.

y y

yy

Γ
WR

R

R R

Figure 13. How a copy of ΓW is filled if bj,d(~p) = 1

The remainder of Γ
(2W )
jW is then filled to make the pattern wj,d by using strong

irreducibility of X, since all of the filled portions are a distance of at least R+1 from

each other. We claim that this pattern wj,d ∈ L
Γ

(2W )
jW

(X) has the property described

in Theorem 8.1. Suppose not; then there exist two overlapping occurrences of wj,d

such that one has nonempty overlap with the empty central copy of Γ(j−4)W in

the other, which implies that wj,d is periodic with respect to some ~v 6= 0 with

‖~v‖∞ < (j− 2)W . We then define ~v′ by defining v′i to be the closest multiple of W

to vi for 1 ≤ i ≤ d. If two are equally close, choose either. Clearly ‖~v−~v′‖∞ ≤ W
2 .

We make the notation ~v′′ := ~v − ~v′.
Each coordinate of ~v′ is divisible by W , and so

~v′

W
has integer coordinates. Since

‖~v′‖∞ ≤ (j − 2)W , ‖ ~v′

W
‖∞ ≤ j − 2. This implies that either ~v′ = 0 or

~v′

W
is the

difference between two overlapping occurrences of Γ
(2)
j , one of which has nonempty

intersection with the central copy of Γj−2 in the other. Assume for now that the

latter is the case. Then, by the definition of bn,d, this implies that there exist

~q, ~q +
~v′

W
∈ Γ

(2)
j such that bj,d(~q) 6= bj,d(~q +

~v′

W
). Without loss of generality, we

assume that bj,d(~q) = 1 and bj,d(~q +
~v′

W
) = 0.

Let’s call S the lexicographically least copy of ΓW−R in the copy of ΓW in Γ
(2W )
jW

corresponding to ~q in Γ
(2)
j and call T the lexicographically least copy of ΓW−R in

the copy of ΓW in Γ
(2W )
jW corresponding to ~q +

~v′

W
in Γ

(2)
j . Then T − S = ~v′, and

since wj,d is periodic with respect to ~v, wj,d|S∩(T−~v) = wj,d|(S+~v)∩T . Note that

T − ~v = (T − ~v′) − ~v′′ = S − ~v′′. Since ‖ ~v′′‖∞ ≤ W
2 , S ∩ (S − ~v′′) 6= ∅, and so
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S ∩ (T − ~v) 6= ∅ as well. In fact, S ∩ (T − ~v) is a copy of Ps1,...,sd
which shares

a corner with S, and for which si ≥ (W − R) − W
2 = 3R + 7 for all 1 ≤ i ≤ d.

Therefore, S ∩ (T − ~v) contains one of the 2d copies of Γ3R+7 in S which share a

corner with S. Since bj,d(~q) = 1, and since S is the lexicographically least copy of

ΓW−R in the copy of ΓW in Γ
(2W )
jW corresponding to ~q in Γ

(2)
j , every one of these

subcubes of S contains an occurrence of y in wj,d. Therefore, wj,d|S∩(T−~v) has y

as a subpattern. However, since (S + ~v) ∩ T ⊆ T , wj,d|(S+~v)∩T is a subpattern of

wj,d|T . Since bj,d(~q +
~v′

W
) = 0, and since T is the lexicographically least copy of

ΓW−R in the copy of ΓW in Γ
(2W )
jW corresponding to ~q+

~v′

W
in Γ

(2)
j , wj,d|T contains

no occurrences of y. Therefore, wj,d|(S+~v)∩T contains no occurrences of y either.

Since wj,d|S∩(T−~v) = wj,d|(S+~v)∩T , we have a contradiction.

The only remaining case is when ~v′ = 0, i.e. ‖~v‖∞ ≤ W
2 . We can then simply

take an integer multiple n~v of ~v such that some coordinate of n~v is greater than W
2 ,

but at most W . Then, n~v is also a period of wj,d, and we can repeat the argument

above for the same contradiction. We arrive at a contradiction in either case, and

so wj,d has the claimed property.

2

9. An application to an undecidability question

One of the complexities of Zd SFTs for d > 1 is that there does not exist an

algorithm which takes as input an alphabet A and a finite set F of finite forbidden

patterns, and decides whether or not the associated SFT (AZd

)F is nonempty. (See

[1] and [14] for details.) One application of Theorem 6.1 is a condition under which

(AZd

)F has positive topological entropy, and so in particular is nonempty.

Theorem 9.1. For any alphabet A and any d > 1, there exist F,G ∈ N such that

for any m > 0 and any finite set of patterns Fm = {wk ∈ LΓnk
(X) : 1 ≤ k ≤ m}

satisfying n1 > G and nk ≥ F (nk−1)
24d2

for 1 < k ≤ m, htop((AZd

)Fm
) > 0.

To prove this, we will need the following lemma:

Lemma 9.2. For any d > 1, there exists C ∈ N so that for any strongly irreducible

Zd shift X = (AZd

)F of finite type t with uniform filling length R containing more

than one point, any n > max(C(R+1)24d2

, 5t), and any w ∈ LΓn
(X), there is some

w′ ∈ LΓm
(X) a subpattern of w such that Xw′ contains more than one point and

is strongly irreducible with uniform filling length at most 2n+R.

Proof. Suppose that such a shift X is given. By Theorem 6.1, there exists N1 such

that for any w ∈ LΓn
(X) with n > N1, there exist w′, w′′ ∈ LΓm

(X) such that w′

is a subpattern of w and replacing an occurrence of w′ by w′′ in an element of X

cannot possibly create a new occurrence of w′. By an examination of the proof of

Theorem 6.1, we see that a sufficient condition for the existence of w′ and w′′ with

these properties is that
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n > max(C ′
( lnn

htop(X)
+R

)12d

, 5t)

for some constant C ′ depending only on d. By Lemma 4.11, htop(X) > ln 2
(R+1)d . The

reader may then check that there exists a constant C depending only on d so that

n > max(C(R+ 1)24d2

, 5t) implies the displayed formula, and thus the existence of

w′ and w′′. By the same argument as that used in the proof of the upper bound of

Theorem 1.2, this implies that Xw′ is nonempty: to create a point of Xw′ , simply

begin with a point x ∈ X, choose an ordering of Z2 with a least element, and

replace each occurrence of w′ in x by w′′ in order. In fact, it is easy to choose

w′′ containing at least two different letters: just make sure that the subword a of

w′′ from the proof of Theorem 6.1 contains at least two letters. This means that

|Xw′ | > 1: any point x′ ∈ Xw′ obtained by repeated replacements of w′ by w′′ in

some point x ∈ X contains at least two letters, meaning that some two of its shifts

are unequal.

Consider any two shapes S, T ⊆ Zd such that ρ(S, T ) > 2n + R, and any

patterns y ∈ LS(Xw′) and z ∈ LT (Xw′). Since y ∈ LS(Xw′), there exists

y′ ∈ LS∪(Sc)(n)(Xw′) such that y′|S = y. Similarly, there exists z′ ∈ LT∪(T c)(n)(Xw′)

such that z′|T = z. For any ~p ∈ S ∪ (Sc)(n), by definition there exists ~p′ ∈ S such

that ‖~p − ~p′‖∞ ≤ n. Similarly, for any ~q ∈ T ∪ (T c)(n), there exists ~q′ ∈ T

such that ‖~q − ~q′‖∞ ≤ n. But ρ(S, T ) > 2n + R, so ‖~p′ − ~q′‖∞ > 2n + R.

By the triangle inequality, ‖~p − ~q‖∞ > R. Therefore, since ~p, ~q were arbitrary,

ρ(S ∪ (Sc)(n), T ∪ (T c)(n)) > R, and so by strong irreducibility of X there exists

x ∈ X such that x|S∪(Sc)(n) = y′ and x|T∪(T c)(n) = z′. We now fix any ordering of

the elements of Zd with a least element (say lexicographically with respect to polar

coordinates) and replace each element of w′ by w′′ in turn with respect to this order.

In this way, we will eventually arrive at x′ ∈ X which has no occurrences of w′ and

is thus an element of Xw′ . Note that since x|S∪(Sc)(n) = y′ and x|T∪(T c)(n) are

patterns in L(Xw′), they had no occurrences of w′. Therefore, any of the replaced

occurrences of w′ had nonempty intersection with
(
(S ∪ (Sc)(n)) ∪ (T ∪ (T c)(n))

)c
.

Consider such a replaced occurrence which occupies U a copy of Γm. From the fact

just noted, there exists ~p ∈ U such that ~p /∈ S ∪ (Sc)(n) ∪ T ∪ (T c)(n). This implies

that ρ({~p}, S) > n and ρ({~p}, T ) > n. Therefore, since the size of U is m ≤ n,

U is disjoint from both S and T . Since U is the location of an arbitrary replaced

occurrence of w′, this implies that x remained unchanged on S and T throughout

the process of changing it to x′, and so x′|S = x|S = y and x′|T = x|T = z. By

definition, we have shown that Xw′ contains more than one point and is strongly

irreducible with uniform filling length at most 2n+R.

2

Proof of Theorem 9.1. By Lemma 9.2, there exists G such that for any n1 > G and

w1 ∈ AΓn1 , there is a subpattern w′
1 of w1 such that (AZd

){w′
1} contains more than

one point and is strongly irreducible with uniform filling length R1 < 4n1. Take F

to be 524d2

C, where C is from Lemma 9.2.
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We prove this theorem by induction. Our inductive hypothesis is that for any

Fm as described in the hypotheses, (AZd

)Fm
contains a strongly irreducible SFT

with more than one point with uniform filling length less than 4nm. The base case

m = 1 is verified by the definition of G above. Now suppose the hypothesis to be

true for m, and consider any Fm+1 = {w1, w2, . . . , wm+1} satisfying the hypotheses

of Theorem 9.1.

By the inductive hypothesis, (AZd

){w1,w2,...,wm} contains a strongly irreducible

shift Xm of finite type tm with more than one point and uniform filling length

Rm < 4nm. We first claim that nm+1 > max(C(Rm + 1)24d2

, 5tm). By the

hypotheses of Theorem 9.1, nm+1 > F (nm)24d2

= 524d2

C(nm)24d2

> C(5nm)24d2

>

C(Rm + 1)24d2

. Since the largest size of a pattern in F is nm, tm ≤ nm, and so

nm+1 > F (nm)24d2

> 5tm.

We now have two cases: either wm+1 ∈ L(Xm) or not. If wm+1 ∈ L(Xm),

then since nm+1 > max(C(Rm + 1)24d2

, 5tm), by Lemma 9.2 there is w′
m+1 a

subpattern of wm+1 such that (Xm)w′
m+1

contains more than one point and is

strongly irreducible with uniform filling length less than 2nm+1 + Rm < 4nm+1.

Then (Xm)w′
m+1

⊆ (Xm)wm+1
⊆ (AZd

)Fm+1
, and the inductive hypothesis is verified

for m+ 1.

If wm+1 /∈ L(Xm), then (Xm)wm+1
= Xm, and so since Xm = (Xm)wm+1

⊆
(AZd

)Fm+1
, in this case (AZd

)Fm+1
contains a strongly irreducible SFT with more

than one point and uniform filling length Rm < 4nm < 4nm+1, and the induction

is complete. We have then shown that for any m, (AZd

)Fm
contains a strongly

irreducible shift with more than one point, and therefore by Lemma 4.11 its

topological entropy is positive.

2
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