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Abstract. We present a streamlined proof of a result essentially present in

[5], namely that for every set S = {s1, s2, . . .} ⊂ N of zero Banach density
and finite set A, there exists a minimal zero-entropy subshift (X,σ) so that

for every sequence u ∈ AZ, there is xu ∈ X with xu(sn) = u(n) for all n ∈ N.

Informally, points from minimal subshifts can achieve completely arbitrary
behavior upon restriction to a set of zero Banach density.

As a corollary, this provides counterexamples to the Polynomial Sarnak

Conjecture of [1] which are significantly more general than some recently pro-
vided in [3] and [4] and shows that no similar result can hold under only the

assumptions of minimality and zero entropy.

1. Introduction

The well-known Sarnak conjecture states that the Möbius function µ is uncor-
related with all deterministic sequences. A sequence is called deterministic if it is
the image under a continuous function of the trajectory of a point in a topological
dynamical system with zero entropy (see Section 2 for definitions of this and
other concepts not defined in this introduction). More formally,

Conjecture 1 (Sarnak Conjecture). If (X,T ) is a topological dynamical system
with zero entropy, x0 ∈ X, and f ∈ C(X), then

1

N

N∑
n=1

µ(n)f(Tnx0)→ 0.

Although this problem is still open, there are many recent works on the topic,
which have made significant progress and resolved it for some classes of dynamical
systems. In [1], a potential stronger ‘polynomial’ (meaning that only polynomial
iterates of x0 are taken rather than all) version of the Sarnak Conjecture was
conjectured. In order to rule out some degenerate examples, the assumption of
minimality was added on (X,T ), meaning that for every x ∈ X, the set {Tnx} is
dense.

Conjecture 2 (Polynomial Sarnak Conjecture ([1], Conjecture 2.3)). If (X,T ) is
a minimal topological dynamical system with zero entropy, x0 ∈ X, f ∈ C(X), and
p : N→ N0 is a polynomial, then

1

N

N∑
n=1

µ(n)f(T p(n)x0)→ 0.
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This conjecture is now known to be false; recently Kanigowski, Lemańczyk, and
Radziwi l l([3]) and Lian and Shi ([4]) have separately provided counterexamples.
However, these counterexamples are specific to the case p(n) = n2 (though they
could perhaps be generalized) and make strong usage of the nice arithmetic prop-
erties of this function. The first is a skew product and the second is a symbolically
defined dynamical system called a Toeplitz subshift.

The purpose of this note is to show that even much weaker versions of Conjec-
ture 2 are false, because minimal zero entropy systems can achieve any possible
behavior (i.e., not just correlation with µ) along any prescribed set S ⊂ N of zero
Banach density (i.e., not just the image of a polynomial). One such result had
already been proved by the author in [5], which already immediately refutes the
Polynomial Sarnak Conjecture.

Theorem 3 ([5], Corollary 5.1). Assume that d ∈ N, (wn) is an increasing sequence
of positive integers where wn+1 < (wn+1 − wn)d+1 for large enough n, and (zn) is
any sequence in T := Z/N. Then there exists a totally minimal, totally uniquely
ergodic, topologically mixing zero entropy map S on T2d+4 so that, if π is projection
onto the final coordinate, π(Swn0) = zn for sufficiently large n.

(We don’t further work with the properties of unique ergodicity and topological
mixing, and so don’t provide definitions here. However, we do note that Theorem 3
shows that even adding these hypotheses to Conjecture 2 would not make it true.)
We note that the entropy of the transformation S was never mentioned in [5].
However, S is defined as a suspension flow of a product of a toral rotation and a
skew product T under a roof function 1 < g < 3. The skew product T is of the form
(x1, x2, x3, . . . , xm) 7→ (x1 +α, x2 +f(x1), x3 +x2, . . . , xm+xm−1) for a continuous
self-map f of T. Since its first coordinate is an irrational rotation, known to have
zero entropy, the map T also has zero entropy by Abramov’s skew product entropy
formula. Then S has zero entropy as well, by Abramov’s suspension flow entropy
formula.

Remark 4. Here are a few more relevant facts about the construction from [5]:

(1) The map S is distal, meaning that for all x 6= y, {d(Tnx, Tny)}n is bounded
away from 0.

(2) The roof function g is C∞ and the function f , though not C∞ as con-
structed in [5], can easily be made so; it is just a uniformly convergent
infinite series of ‘bump functions,’ which can easily be chosen C∞.

The second fact may be of interest since the authors of [3] prove a positive result
for convergence along prime iterates of similar skew products (x, y) 7→ (x + α, y +
f(x)) under the assumption that the function f is real analytic, provide some
counterexamples with continuous f , and ask whether this assumption could be
weakened to C∞. Though the constructions are not exactly the same, and though
the primes absolutely do not satisfy the assumption of Theorem 3, (2) might suggest
that C∞ is not always sufficient for good averaging of skew products along sparse
sequences.

We note that Theorem 3 clearly applies to any sequence wn = p(n) for a non-
constant polynomial p : N → N0 (possibly omitting finitely many terms), and so,
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by simply defining zn to be 1
2 when µ(n) = 1 and 0 otherwise, one achieves

1

N

N∑
n=1

µ(n)π(Sp(n)0) =
0.5|µ−1({1}) ∩ {1, . . . , N}|

N
,

which does not approach 0 as N →∞, disproving the Polynomial Sarnak Conjec-
ture for every nonconstant p. The same is true of any function p with polynomial
growth, even for degree less than 2, e.g. p(n) = bn1.01c. However, Theorem 3 does
not apply to more slowly growing p such as bn lnnc. The author proved a different
result (Corollary 3.1) in [5] using subshifts; a subshift is a closed shift-invariant
subset of AZ (for some finite alphabet A) endowed with the left-shift transfor-
mation. Corollary 3.1 of [5] states that given any sequence of zero Banach density
(regardless of growth rate), there exists a minimal subshift whose points can achieve
arbitrary behavior along that sequence. However, entropy was not mentioned there,
and although the proof there can indeed yield a zero entropy subshift, it’s not easy
to verify; the construction is quite complicated in order to achieve (X,T ) which is
totally minimal, totally uniquely ergodic, and topologically mixing.

In this note, we present a streamlined self-contained proof of the following result,
which shows that minimal zero entropy subshifts can realize arbitrary behavior
along any sequence of zero Banach density.

Theorem 5. For any S = {s1, s2, . . .} ⊂ N with d∗(S) = 0 and any finite alphabet
A, there exists a minimal zero entropy subshift X ⊂ AZ so that for every u ∈ AN,
there is xu ∈ X where xu(sn) = u(n) for all s ∈ S.

We note that this proves that even with substantially weaker hypotheses, nothing
in the spirit of the Polynomial Sarnak Conjecture can hold under only the assump-
tions of minimality and zero entropy. Even if p is only assumed to have range of zero

Banach density and ρ : N → Z is only assumed to have lim sup 1
N

∑N
n=1 |ρ(n)| > 0

(equivalently, ρ takes nonzero values on a set of positive upper density), one can
define a subshift X on {−1, 0, 1} and xu ∈ X as in Theorem 5 for u(n) = sgn(ρ(n)).
Then, for f ∈ C(X) defined by x 7→ x(0), the limit supremum of the averages

1

N

N∑
n=1

ρ(n)f(σp(n)xu) =
1

N

N∑
n=1

ρ(n)xu(p(n)) =
1

N

N∑
n=1

ρ(n)u(n) =

1

N

N∑
n=1

ρ(n)sgn(ρ(n)) =
1

N

N∑
n=1

|ρ(n)|

is positive by assumption.
We remark that when ρ = µ is the Möbius function, this means that

1

N

N∑
n=1

µ(n)f(σp(n)xu)

can be made to approach 6
π2 (for xu in a minimal zero-entropy subshift), a slight

improvement of [4] which showed that it could attain values arbitrarily close to 6
π2 .

2. Definitions

A topological dynamical system (X,T ) is defined by a compact metric space
X and homeomorphism T : X → X. A subshift is a topological dynamical
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system defined by some finite set A (called the alphabet) and the restriction of
the left shift map σ : AZ → AZ defined by (σx)(n) = x(n + 1) to some closed
and σ-invariant X ⊂ AZ (with the induced product topology). A subshift (X,σ) is
minimal if for every x ∈ X, {σnx}n∈Z is dense in X.

A word over A is any finite string of symbols from A; a word w = w(1) . . . w(n)
is said to be a subword of a word or infinite sequence x if there exists i so that
w(1) . . . w(n) = x(i + 1) . . . x(i + n). The language L(X) of a subshift (X,σ) is
the set of all subwords of sequences in X, and for any n ∈ N we denote Ln(X) =
L(X) ∩ An. For two words u = u(1) . . . u(m) and v = v(1) . . . v(n), denote by uv
their concatenation u(1) . . . u(m)v(1) . . . v(n).

We do not give a full definition of topological entropy here, but note that it
is a number h(X,T ) ∈ [0,∞] associated to any TDS (X,T ) which is conjugacy-
invariant. We will only need the following definition for subshifts: for any (X,σ),

h(X,σ) = lim
ln |Ln(X)|

n
.

The Banach density of a set S ⊂ N is

d∗(S) := lim
n→∞

sup
k∈N

|S ∩ {k, . . . , k + n− 1}|
n

.

3. Proof of Theorem 5

Proof. As in [5], we adapt the block-concatenation construction of Hahn and Katznel-
son ([2]).

We construct X iteratively via auxiliary sequences mk of odd positive integers,
Ak ⊂ Amk , and wk ∈ Ak. Define m0 = 1, A0 = A, and w0 = 0 (which we assume
without loss of generality to be in A). Now, suppose that mk, Ak, and wk are
defined. Define mk+1 > max(3mk|Ak|, 12(ln 2)(4/3)k+1) to be an odd multiple of
3mk large enough that |S ∩ I|/|I| < (3mk)−1 for all intervals I of length mk+1

(using the fact that d∗(S) = 0). Define Ak+1 to be the set of all concatenations of
mk+1

mk
words in Ak in which every word in Ak is used at least once and in which at

least one-third of the concatenated words are equal to wk. Define Yk to be the set of
shifts of biinfinite (unrestricted) concatenations of words in Ak, define Y =

⋂
k Yk,

and define X to be the subshift of Y consisting of sequences in which every subword
is a subword of some wk.

We claim that (X,σ) is minimal. Indeed, consider any x ∈ X and w ∈ L(X).
By definition, w is a subword of wk for some k. By definition, wk is a subword of
every word in Ak+1. Finally, x is a shift of a concatenation of words in Ak+1, each
of which contains wk, and therefore w. So, x contains w, and since w ∈ L(X) was
arbitrary, the orbit of x is dense. Since x ∈ X was arbitrary, (X,σ) is minimal.

We also claim that (X,σ) has zero entropy. We see this by bounding |Ak| from
above. For every k, each word in Ak+1 is defined by an ordered (mk+1/mk)-tuple
of words in Ak, where at least one-third are wk. The number of such tuples can be
bounded from above by(

mk+1/mk

mk+1/3mk

)
|Ak|2mk+1/3mk ≤ 2mk+1/mk |Ak|2mk+1/3mk .

Therefore,
ln |Ak+1|
mk+1

≤ ln 2

mk
+

2

3

ln |Ak|
mk

.
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Now, it’s easily checked that ln |Ak|
mk

≤ ln |A|(3/4)k for all k by induction. The

base case k = 0 is immediate. For the inductive step, if we assume that ln |Ak|
mk

≤
ln |A|(3/4)k, then recalling that mk > 12(ln 2)(4/3)k,

ln |Ak+1|
mk+1

<
1

12
(3/4)k+

2

3
ln |A|(3/4)k ≤ ln |A|

12
(3/4)k+

2

3
ln |A|(3/4)k = ln |A|(3/4)k+1.

Therefore, for all k, |Ak| ≤ eln |A|(3/4)
kmk . Finally, we note that every word in

Lmk
(X) is a subword of a concatenation of a pair of words in Ak, so determined by

such a pair and by the location of the first letter. Therefore, |Lmk
(X)| ≤ mk|Ak|2 <

mke
2 ln |A|(3/4)kmk . This clearly implies that

h(X) = lim
k→∞

ln |Lmk
(X)|

mk
≤ lim sup

k→∞

lnmk

mk
+ 2 ln |A|(3/4)k = 0,

i.e. X has zero entropy.
It remains, for u ∈ AN, to construct xu ∈ X with xu(sn) = u(n) for all sn ∈ S.

The construction of xu proceeds in steps, where it is continually assigned letters
from A on portions of Z, with undefined portions labeled by ∗. Formally, define
x(0) ∈ A t {∗}Z by x(0)(sn) = u(n) for s ∈ S and ∗ for all other locations.

Now partition Z into the intervals ((i− 0.5)m1, (i+ 0.5)m1) (herein, all intervals
are assumed to be intersected with Z). For every i for which S ∩ ((i− 0.5)m1, (i+
0.5)m1) 6= ∅, consider the m1-letter word x(0)(((i − 0.5)m1, (i + 0.5)m1)). By
definition of m1, |S ∩ ((i− 0.5)m1, . . . , (i+ 0.5)m1)| < m1/3m0 = m1/3, and so at
most one-third of the letters in this word are non-∗. Fill the remaining locations
by assigning the first m1/3 as w0 = 0. At least m1/3 letters remain, which is larger
than |A0| = |A| by definition of m1. Fill those in an arbitrary way which uses all
letters from A at least once. The resulting m1-letter word is in A1 by definition,

call it w
(1)
i . Now, define x(1) by setting x(1)(((i − 0.5)m1, (i + 0.5)m1)) = w

(1)
i

for all i as above (i.e. those for which S ∩ ((i − 0.5)m1, (i + 0.5)m1) 6= ∅) and ∗
elsewhere. Note that x(1) is an infinite concatenation of words in A1 and blocks of
∗ of length m1 and that x(1) contains ∗ on any interval ((i − 0.5)m1, (i + 0.5)m1)
which is disjoint from S.

Now, suppose that x(k) has been defined as an infinite concatenation of words in
Ak and blocks of ∗ of length mk which contains ∗ on any interval ((i− 0.5)mk, (i+
0.5)mk) which is disjoint from S. We wish to extend x(k) to x(k+1) by changing some
∗ symbols to letters in A. Consider any i for which S ∩ ((i − 0.5)mk+1, . . . , (i +
0.5)mk+1) 6= ∅. The portion of x(k) occupying that interval is a concatenation
of words in Ak and blocks of ∗ of length mk (we use here the fact that mk+1

is odd), and the number which are words in Ak is bounded from above by the
number of j ∈ ((i− 0.5)mk+1/mk, (i+ 0.5)mk+1/mk) for which ((j − 0.5)mk, (j +
0.5)mk) is not disjoint from S, which in turn is bounded from above by |S ∩ ((i−
0.5)mk+1, (i + 0.5)mk+1)|, which by definition of mk+1 is less than mk+1/3mk.
Therefore, at least two-thirds of the concatenated mk-blocks comprising x(k)(((i−
0.5)mk+1, (i + 0.5)mk+1)) are blocks of ∗. Fill the first mk+1/3mk of these with
wk. Then at least mk+1/3mk blocks remain, which is more than |Ak| by definition
of mk+1. Fill these in an arbitrary way which uses each word in |Ak| at least once.

By definition, this creates a word in Ak+1, which we denote by w
(k+1)
i . Define

x(k+1)(((i − 0.5)mk+1, (i + 0.5)mk+1)) = w
(k+1)
i for any i as above (i.e. those for

which S∩ ((i−0.5)mk+1, (i+0.5)mk+1) 6= ∅) and as ∗ elsewhere. Note that x(k+1)
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is an infinite concatenation of words in Ak+1 and blocks of ∗ of length mk+1 which
contains ∗ on any interval ((i− 0.5)mk+1, (i+ 0.5)mk+1) which is disjoint from S.

We now have defined x(k) ∈ (At{∗})Z for all k ∈ N. Since each is obtained from
the previous by changing some ∗s to letters from A, they approach a limit xu which
agrees with x(0) on all locations where x(0) had letters from A, i.e. xu(sn) = u(n)
for all n ∈ N. Since S 6= ∅, S ∩ (−0.5mk, 0.5mk) 6= ∅ for all large enough k, and
so x(k)((−0.5mk, 0.5mk)) has no ∗, meaning that xu ∈ AZ.

It remains only to show that xu ∈ X. By definition, xu is a concatenation of
words in Ak for every k, so xu ∈ Y =

⋂
k Yk as in the definition of X. Finally, every

subword w of xu is contained in xu((−0.5mk, 0.5mk)) for large enough k, and this
word is in Ak by definition. Since all words in Ak are subwords of wk+1, w is also.
Therefore by definition, xu ∈ X and xu(sn) = u(n) for all n, completing the proof.

�

Remark 6. We observe that the assumption of zero Banach density cannot be
weakened in Theorem 5. Assume for a contradiction that S ⊂ N has d∗(S) = α > 0,
and that every u ∈ AN could be assigned xu as in Theorem 5. By definition of
Banach density, there exist intervals In with lengths approaching infinity so that
|S ∩ In|/|In| > α/2 for all n. For every n, since all possible assignments of letters
from A to locations in S ∩ In give rise to sequences in X, |L|In|(X)| ≥ 2|S∩In| >

|A|α|In|/2. Then,

h(X) = lim
n

ln |L|In|(X)|
|In|

≥ lim sup
ln |A|α|In|/2

|In|
= α(ln |A|)/2 > 0.

Therefore, no such X, minimal or otherwise, can have zero entropy.
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