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Abstract

Unfinished draft. Many references and details are still missing.
These are notes for my talk at the workshop Geometric and Category-Theoretic ap-
proaches to Conformal Field Theory. We give an overview about applications and
appearances of Grothendieck-Verdier duality, a weakening of rigidity, in conformal
field theory, quantum topology, and representation theory. This is an exciting field,
with many developments in recent years and we will give (a necessarily incomplete)
overview about these trying to highlight some open questions. A focus will be on
connections between algebra and low-dimensional topology.

1 Introduction

Parts of the following text and some of the figures are taken from my original articles on
the subject.

2 From 2-dimensional conformal field theories to representation theory
and quantum topology

Quantum field theory is notoriously hard to capture fully in terms of mathematical defi-
nitions and even-though the situation is better for 2-dimensional conformal field theories
we will not try to give a precise definition here, but limit ourselves to the description of
some of the connected mathematical structures.

As the name suggests, 2-dimensional conformal field theories are defined on 2-dimensional
oriented manifolds equipped with a conformal structure, i.e., an equivalence class of Eu-
clidean metrics gµν up to a local positive scale. An oriented surface equipped with a
conformal structure is equivalent to a Riemann surface, i.e. a complex 1-dimensional
manifold and it is often more convinent to study 2-dimensional CFTs in terms of com-
plex geometry. Part of the structure of a conformal field theory Z is a collection of local
observables (sometimes also called operators) v ∈ V and for every Riemann surface X
correlation functions

⟨v1(x1) · · · vn(xn)⟩Σ ∈ C

depending on the positions xi ∈ X with singularities on the diagonals xi = xj . When all
correlation functions are (anti-)meromorphic in the xi, the conformal field theory is called
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(anti-)chiral. Correlation functions in a chiral CFT are usually multi-valued, i.e. they
are not globally well-defined functions on the moduli space of Riemann surfaces. From
every CFT we can extract its chiral and anti-chiral parts and these can be recombined to
construct the full CFT. We will come back to this at the end of the notes.

The observables v are not just a set, but form an intricate algebraic structure encoding
their local behavior. When two operators v1 and v2 are brought together, correlation func-
tions will develop singularities. These are controlled by the operator product expansion
(OPE)

v1(x1)v2(x2) ∼
∑
i

C i
1,2(x1, x2)vi(x2)

in the limit when x1 approaches x2. The functions C i
1,2(x1, x2) are known as OPE coef-

ficients and are highly constrained by conformal symmetry and associativity involving 3
operators. In chiral theories, the local structure of observables can be rigorously encoded
in terms of a vertex operator algebra. In this case the OPE will depend meromorphically
on the coordinates x1 and x2 and we can assume without lost of generality that x2 = 0
and expand the OPE in formal Laurent series in x1 = z

v1(z)v2(0) ∼
∑
n∈Z

(v1 ·n v2)zn (2.1)

where v1 ·n v2 is another operator. Hence, operators in a chiral CFT have Z indexed ways
of multiplying them. The resulting algebraic structure is axiomatized by the definition of
a vertex operator algebra (VOA) that packages the Z many multiplications into a single
map

V −→ End(V )((z)) .

We will not give the full definition of a VOA here that involves among other parts asso-
ciativity of the OPE and the existence of a vacuum vector, but refer to [FBZ02].

Given the VOA of local operators V in a chiral conformal field theory, Equation (2.1)
will hold locally within all correlation functions. A conformal block on a Riemann surface
X is a collection of correlation functions that is compatible with the OPE of V. The
collection of all conformal blocks form a vector space ConfV(X); the space of conformal
blocks. There is a mathematical construction of the vector space ConfV(X) directly from
a VOA, see [FBZ02]. Spaces of conformal blocks have been studied intensely both within
physics and mathematics. We summarize some of their (expect) properties:

• Conformal blocks can be defined for Riemann surfaces with punctures or boundaries
if one additionally specifies VOA modules (fixing the local behavior of correlation
functions near the puncture or boundary) for all of them. We will call those boundery
lables.

• The space of conformal blocks depends smoothly on the complex structure, i.e. forms
a vector bundle ConfV(−) −→ Mg,n over the moduli space of Riemann surfaces
with punctures/ boundaries. This vector bundle carries a canonically projective flat
connection, called the Knizhnik–Zamolodchikov(KZ) connection.
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• They are local in X, meaning that the space of conformal blocks on larger surfaces
can be constructed by gluing smaller surfaces along boundaries and ‘summing’ (in
an appropriate sense) over intermediate VOA representations. Gluing results of this
type are so far only known for rational [DGT23] and certain C2-cofinite [GZ23, GZ24,
GZ25] VOAs.

Vector bundles of conformal blocks are the place where the connections to low dimen-
sional topology and representation theory that are the main focus of this survey ar-
ticle arise. The mapping class group MCG(Σg,n) of compact oriented surfaces with
n parameterized boundary circles Σn,g is the group of path connected components of
the topological group of orientation and boundary preserving diffeomorphisms of Σg,n;
MCG(Σg,n) := π0(Diff(Σg,n)). A central consequence of Teichmüller theory is that for
(most) surfaces Mg,n is a classifying space for the corresponding mapping class group
MCG(Σg,n) of the underlying topological surface, i.e. its only non-trivial homotopy group
is π1(Mg,n) = MCG(Σg,n). Using the Riemann Hilbert correspondence, i.e. the equiva-
lence between (projective) flat bundles on a space and (projective) representations of its
fundamental group, vector bundles of conformal blocks can be equivalently encoded in
terms of the following data.

• For every surface Σg,n and choice of boundary labels X1, . . . , Xn a vector spaces
F(Σg,n;X1, . . . , Xn) equipped with a projective representation of MCG(Σg,n).

• The vector spaces F(Σg,n;X1, . . . , Xn) for different surfaces are compatible in the
sense that gluing along boundaries corresponds to ‘summing over’ boundary labels
(we will be more precise about what this means later).

The resulting structure is known as a modular functor going back to early work of Moore
Seiberg on two dimensional conformal field theory [MS90]. There are many approaches
to formulating a precise mathematical definition. We will discuss those along with classi-
fication results in Section 5. The explicit construction of modular functors from strongly
rational VOAs was recently rigorously established in [DW25].

Remark 2.1. The study of mapping class groups of surfaces is an active area of research,
with deep and beautiful connections to low-dimensional topology, geometric group theory,
dynamics, and number theory; see [FM12] for a textbook introduction. A central open
question that motivates both past and present research in the field is whether mapping class
groups are linear, that is, whether they admit faithful finite dimensional representations.
The conformal blocks of a CFT are described by a modular functor and hence give rise
to potentially interesting mapping class group representations. Indeed, one of the most
important result in the study of the finite dimensional representation theory of mapping
class groups is that the representations related to the two dimensional Wess-Zumino-
Witten model at level k are asymptotically faithful, i.e. for every mapping class group
element γ there exists an integer k such that γ acts non-trivially on the conformal blocks
of the Wess-Zumino-Witten model at level k [And06, FWW02]. It is known since the
1980’s that representations arising in rational conformal field theories can’t be faithful,
due to Vafa’s theorem [Vaf88, Eti02].

3



Question 2.2. Is there a (chiral) CFT whose spaces of conformal blocks are finite dimen-
sional and carry faithful mapping class group representations?

Working with spaces of conformal blocks directly in terms of correlation functions can
be quite complicated, and hence it can be useful to have alternative descriptions of the
corresponding modular functors. The modular functor corresponding to a VOA is believed
to depend only on its category of modules, though the identification of elements in the
vector space the modular functor assigns to a surface with actual meromorphic correlation
functions does. For example, there are VOA’s with trivial representation theory (called
holomorphic VOAs) and hence also trivial modular functor, but interesting correlation
functions. It turns out that we can assign modular functors to any category equipped with
a so called ribbon Grothendieck-Verdier structure satisfying a non-degeneracy condition.
Describing this structure and their connection to modular functors, appearance in quantum
topology, and applications in CFT is the main topic of this review. Hence we might expect
the following commuting diagram of constructions

{chiral CFT} {Modular functor}

{VOA} {non-degenerate ribbon Grothendieck-Verdier categories}

(1)

(2)

(3)

(4)

(5)

The commutativity of this diagram and even some of its ingredients is conjectural at this
point. Let us comment on the ingredients in slightly more detail:

(1) There are different mathematical axiomatizations of the physical notion of a chiral
CFTs, one is in terms of VOAs making (1) an equality. However, there are different
approaches for example in terms of conformal nets, holomorphic factorization alge-
bras, or Segal style functorial field theories, whose relations to VOAs are less clear.
We refer to [Hen20] for some of those and a discussion of their connections.

(2) The map (2) depends on the explicit definition of chiral CFT, but morally should
follow the following logic, from a chiral conformal field theory we can extract its
vector bundles of conformal blocks with a projective flat connection. Applying the
Riemann-Hilbert correspondence to these produces a modular functor.

(3) We already discussed this map above, but would like to stress again that so far it
has only been constructed for strongly rational VOAs in [DW25].

(4) The categories of representations for certain VOAs are known to be ribbon Grothendieck-
Verdier categories [ALSW21]. We will explain this in more detail below. It is largely
open wehther these satisfy the non-degeneracy condition needed to construct mod-
ular functors.

(5) The map (5) corresponds to the belief that the modular functor corresponding to
a VOA can be constructed directly from its representation theory. We will explain
this map in more detail in the following section. It turns out to be an equivalence
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and hence can also be used to define (4) as (5)−1 ◦ (3), a strategy used in [DW25]
to assign a modular fusion category to a strongly rational VOA directly from the
geometry of conformal blocks.

3 Grothendieck-Verdier duality

In the following we will mostly focus on the algebraic structures related to conformal field
theories whose spaces of conformal blocks are finite dimensional. These include rational
and (certain) logarithmic CFTs, but exclude many other examples of interest [?]. The
reason for this is that in this setting the higher linear algebraic foundations are better
developed and we have access to many usefull technical tools. However, we would like
to highlight that many of the results discussed later hold in any symmetric monoidal
bicategory. We start by recalling some basic definitions.

3.1 Categorical preliminaries. Let k be an algebraically closed field, usually C for
us. A k-linear category is a category whose morphism spaces are k-vector spaces and
composition is bilinear. For the following, we have to fix a 2-category of ‘nice’ linear
categories as the place to perform categorical linear algebra. There are many potential
options in the literature including presentable k-linear categories, Kapranov–Voevodsky
2-vector spaces, or Abelian categories. For most of this article, we will restrict ourselves
to finite categories:

Definition 3.1. A finite category is a linear Abelian category with finite-dimensional
morphism spaces, enough projective objects, and finitely many isomorphism classes of
simple objects such that every object has finite length.

They also admit a more concrete description.

Proposition 3.2. A linear category C is finite if and only if there exists a finite dimen-
sional algebra A and an equivalence C ∼= A-Mod between C and the category of finite
dimensional A-modules.

We can think of the choice of an algebra A and equivalence C ∼= A-Mod as choosing
coordinates (in the sense of geometry) or generators for C. There are two common choices
for morphisms between finite categories; left and right exact functors.

Definition 3.3. We denote by Rexf and Lexf the 2-categories of finite categories, right
or, respectively, left exact functors, and natural transformations.

Note that taking adjoint functors induces an equivalence Rexf ∼= (Lexf)1,2 op, where 1,2
op indicates that both the direction of 1 and 2-morphisms is reversed. Additionally, there
is an equivalence Rexf ∼= (Lexf)2 op, sending C to Cop.

The category Rexf is symmetric monoidal when equipped with the Kelly-Deligne prod-
uct C ⊠ D of finite tensor categories [?], which satisfies the universal property that right
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exact functors out of it are equivalent to the bilinear functors out of C ×D which are right
exact in both arguments. Concretely, in ‘coordinates’

A-Mod⊠B-Mod ∼= (A⊗B)-Mod .

Slightly surprisingly, the Kelly-Deligne tensor product satisfies a similar universal property
with respect to left exact functors and hence makes both Rexf and Lexf into symmetric
monoidal 2-categories.

(Co)ends In some places we will use ends and coends in linear categories, for example,
in Section 3. For the convenience of the reader, we review the definition and some basic
properties of (co)ends following [?, ?].

Definition 3.4. Let F : Cop × C −→ D be a functor. A wedge for F consists of an
object d ∈ D together with a family of morphisms {αc : d −→ F (c, c)}c∈C such that for all
morphisms f : c −→ c′ in C

d F (c′, c′)

F (c, c) F (c, c′)

αc′

αc F (f,id′c)

F (idc,f)

commutes. A morphism between wedges f : d −→ d′ consists of a morphism d −→ d′ in
D such that

d

d′ F (c′, c′)

F (c, c) F (c, c′)

αc′

αc

α′
c′

α′
c F (f,id′c)

F (idc,f)

commutes.

There is a dual notion of a cowedge consisting of an object d together with morphisms
αc : F (c, c) −→ d such that the obvious diagram commutes. Morphisms of cowedges are
defined as morphisms d −→ d′ such that the obvious diagrams commute. (Co)Ends are
universal (co)wedges.

Definition 3.5. Let F : Cop × C −→ D be a functor. An end of F written as
∫
c∈C F (c, c)

is a terminal object in the category of wedges of F .

An coend of F written as
∫ c∈C

F (c, c) is an initial object in the category of cowedges
of F .
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Remark 3.6. Let us spell out the universal property of the coend
∫ c∈C

F (c, c). Being a

cowedge it comes with morphisms F (c, c) −→
∫ c∈C

F (c, c) for all c ∈ C such that for every

other cowedge F (c, c) −→ d there exists a unique morphism
∫ c∈C

F (c, c) −→ d making

F (c, c′) F (c′, c′)

F (c, c)
∫ c∈C

F (c, c)

d

commute. This shows that coends are unique up to unique isomorphism. For this reason
we will speak of the coend sometimes. The universal property also ensures that coends
are functorial, i.e. (assuming that all coends in D exist) there is a functor∫ c∈C

: [Copp × C,D] −→ D .

Example 3.7. • Let F : C −→ D be a functor between categories. F induces a

functor F̂ : Cop × C prC−−→ C F−→ D. Spelling out the definitions shows that the end∫
c∈C F̂ (c, c) agrees with the limit of F and the coend

∫ c∈C
F̂ (c, c) with the colimit.

• Let C be a category equivalent to the category with one object and one morphism
and F : Copp×C −→ D. The (co)end is given by the value of F (c, c) at an arbitrary
element c ∈ C with structure maps induced from F .

• Let F : V −→ V ′ be a linear functor between finite categories. The value of F at
an object V ∈ V can be computed by the coend

F (V ) ∼=
∫ V ′∈V

Hom(V ′, V )⊗ F (V ′) .

Furthermore, this is natural in V inducing a natural isomorphism

F (·) ∼=
∫ V ′∈V

Hom(V ′, ·)⊗ F (V ′) .

Statements of this type are called generalized Yoneda lemmas. The special case
F = idV is sometimes called the (enriched) coYoneda lemma. We refer to [FSS20,
Section 2.3] for a proof.

(Co)ends can be expressed as (co)limits ensuring there existence in a lot of interesting
examples.

Proposition 3.8. Let D be a complete and cocomplete category and F : Copp×C −→ D
a functor. The end of F exists and is given by the equalizer∫

c∈C
F (c, c) ∼= eq

∏
c∈C

F (c, c) ⇒
∏

f :c→c′

F (c, c′)

 .
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Dually, the coend of F exists and is given by the coequalizer

∫ c∈C
F (c, c) ∼= coeq

 ∐
f :c→c′

F (c, c′) ⇒
∐
c∈C

F (c, c)

 .

One of the advantages of the calculus of (co)ends is that iterated (co)ends are well
behaved, as indicated by the integral notation.

Theorem 3.9 (Fubini’s theorem for (co)ends). Let F : C × Copp × E × Eopp −→ D be a
functor. There are canonical natural isomorphisms∫ c∈C ∫ e∈E

F (c, c, e, e) ∼=
∫ (c,e)∈C×E

F (c, c, e, e) ∼=
∫ e∈E ∫ c∈C

F (c, c, e, e) .

The same statement holds for ends.

3.2 Grothendieck-Verdier duality. A monoidal categroy C is called rigid if all of its
objects x ∈ C admit both a left and right dual ∨x and x∨ equipped with evaluation
and coevaluation maps, see Example 3.11 for more details. This form of duality is too
restrictive in many examples; it imposes finiteness conditions on the objects of C (a vector
space has a dual if and only if it is finite dimensional) and exactness conditions on the
tensor product. For this reason, in practice often only weaker versions of duality are
present. One such notion is that of ⋆-autonomous categories [Bar79]. A prominent class of
examples has their origin in Grothendieck-Verdier duality in algebraic geometry [?]. This
inspired Boyarchenko and Drinfeld [BD13] to call this type of duality a Grothendieck-
Verdier duality and we will follow their conventions.

Definition 3.10. AGrothendieck-Verdier category is a category C together with an object
K ∈ C such that C(K,X ⊗−) is representable for every X ∈ C and such that the functor
D : C −→ Cop sending X to a representing object DX for C(K,X ⊗−) is an equivalence.
The objectK is called the dualizing object. The functor D is referred to as duality functor.

Our conventions are dual to those introduced in [BD13] where one asks for a repre-
sentation of C(− ⊗X,K) instead. The conventions differ by replacing C with Cop, which
exchanges left and right exact functors. We will see below that our definition is natural
for monoidal categories in Lexf , i.e. those where the tensor product is left exact, whereas
the dual conventions correspond to monoidal categories in Rexf .

Grothendieck-Verdier categories generalize the usual notion of rigid monoidal cate-
gories as the following example shows.

Example 3.11. Every (right) rigid monoidal category is an example of a Grothendieck-
Verdier category. Recall that a monoidal category (C,⊗, I) is (right) rigid if every object
X ∈ C admits a right dual X∨. This is an object X∨ ∈ C together with an evaluation
map evX : X∨ ⊗X −→ I and coevaluation map coevX : I −→ X ⊗X∨ which satisfy the
usual snake relations. We can define a Grothendieck-Verdier structure on the monoidal
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category C that consists of the object K = I and the natural isomorphisms

C(I,X ⊗ Y ) −→ C(X∨, Y )

(f : I → X ⊗ Y ) 7−→
(
X∨ idX∨ ⊗f
−−−−−→ X∨ ⊗X ⊗ Y evX ⊗ idY−−−−−−→ Y

)
for all X,Y ∈ C. More generally, cp-rigidity (all projective objects have duals) is enough
to define a Grothendieck-Verdier structure, see [MW25a] for the details.

In general, Grothendieck-Verdier categories can be quite different from rigid categories
as the following non-linear example shows.

Example 3.12. The following example is well-known: For a set X, denote by ℘(X) the
category of subsets of X with inclusions as morphisms. The union provides a monoidal
structure on ℘(X) with monoidal unit ∅ ∈ ℘(X). For U ∈ ℘(X), denote by C(U) ∈ ℘(X)
the complement. The canonical isomorphisms

℘(X)(X,U ∪ −) ∼= ℘(X)(C(U),−)

endow (℘(X),∪) with a Grothendieck-Verdier structure with dualizing object X and dual-
ity C. IfX is not the empty set, this provides us with an example of a Grothendieck-Verdier
category which does not come from a rigid monoidal category in the sense of Example 3.11.

We will be mostly interested in Grothendieck-Verdier categories which are also finite. A
Grothendieck-Verdier category in Lexf is a Grothendieck-Verdier category C such that the
tensor product is left exact. If the tensor product is right exact instead and the conventions
for dualizing objects are reversed, we speak of a Grothendieck-Verdier category in Rexf .

Remark 3.13. Let (C,⊗, 1,K) be a Grothendieck-Verdier category in Lexf . In this case
(Cop,⊗op, 1,K) is a Grothendieck-Verdier category in Rexf , but as part of the Grothendieck-
Verdier structure we also have an equivalence D : C −→ Cop, which we can use to define
a new right exact tensor product on C as ⊙ := D−1 ◦ ⊗op ◦ (D ⊠ D) : C ⊠ C −→ C with
monoidal unit K. In this sense, both definitions are dual to each other. It is often helpful
to use both tensor products when working with Grothendieck-Verdier categories. We will
come back to this later.

Common structures on rigid monoidal categories in quantum algebra have natural
analogs for Grothendieck-Verdier categories. In the remainder of this section we will
explain the two that are most relevant to us. We summarize these and their connections
in Figure 1.

Recall that a pivotal structure on a rigid monoidal category is a natural monoidal
equivalence ω : idC =⇒ (−)∨∨. Sending a morphism f : I −→ X ⊗ Y to

I
coevX∨−−−−−−→ X∨ ⊗X∨∨ ∼= X∨ ⊗ (I ⊗X∨∨)

idX∨ ⊗(f⊗idX∨∨ )
−−−−−−−−−−−−−→ X∨ ⊗ ((X ⊗ Y )⊗X∨∨) ∼= ((X∨ ⊗X)⊗ Y )⊗X∨∨

(evX ⊗ idY )⊗ω−1
X−−−−−−−−−−−−→ (I ⊗ Y )⊗X ∼= Y ⊗X .
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Figure 1: Structures on GV-categories

a pivotal structure induces an isomorphism ψX,Y : C(1, X ⊗ Y ) −→ C(1, Y ⊗ X). This
structure generalizes to Grothendieck-Verdier categories.

Definition 3.14 ([BD13]). A pivotal structure on a Grothendieck-Verdier category C
with dualizing object K and duality D is the choice of an isomorphism

ψX,Y : C(K,X ⊗ Y ) −→ C(K,Y ⊗X)

natural in X,Y ∈ C satisfying

ψX,Y = ψ−1
Y,X

and making the diagram

C(K, (X ⊗ Y )⊗ Z) C(K,Z ⊗ (X ⊗ Y )) C(K, (Z ⊗X)⊗ Y )

C(K,X ⊗ (Y ⊗ Z)) C(K,Y ⊗ (Z ⊗X))

C(K, (Y ⊗ Z)⊗X)

ψX⊗Y,Z C(K,αZ,X,Y )

ψZ⊗X,YC(K,αX,Y,Z)

C(K,αY,Z,X)ψY ⊗Z,X

commute for X,Y, Z ∈ C. Here α is the associator of the monoidal category C.

Remark 3.15. By [BD13, Proposition 5.7], a pivotal structure amounts precisely to a
natural monoidal isomorphism D2 ∼= idC whose component at the unit I is the canonical
isomorphism D2I ∼= I.
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Pivotal Grothendieck-Verdier categories should be understood as a categorification of
the notion of a symmetric Frobenius algebra (see also [Str04] for the connection between
Frobenius algebras and GV-categories). To explain this statement in more detail, we note
that a monoidal category is an algebra in categories over the associative operad. Operads
are a mathematical framework to encode abstract algebraic structures, and algebras over
them are concrete realizations of these operations. We will refrain from using operads
extensively in this note and refer to [Fre17, GK95, GK98] for a detailed introduction.
However, they play an important role in the background and underlie the proofs of many
of the results we review. The associative operad has a cyclic structure which allows us
to exchange inputs and outputs of operations. There is a notion of cyclic algebras over a
cyclic operad, which are additionally equipped with a non-degenerate invariant symmetric
pairing. Cyclic associative algebras in vector spaces are symmetric Frobenius algebras.
We have the following generalization.

Theorem 3.16 ([MW23c]). Cyclic associative algebras in Rexf and Lexf are pivotal
Grothendieck-Verdier categories in Rexf and Lexf , respectively.

A braiding on a monoidal category is a natural isomorphisms cX,Y : X⊗Y −→ Y ⊗X
satisfying the hexagon relations [JS93]. The ways braidings can interact with the notion
of a Grothendieck-Verdier structure is summarized in the following definition.

Definition 3.17. A braided Grothendieck-Verdier category is a Grothendieck-Verdier
category whose underlying monoidal category is equipped with a braiding c. A balancing
on C is a natural automorphism of the identity functor idC whose components θX : X −→
X satisfy

θX⊗Y = cY,XcX,Y (θX ⊗ θY ) for X,Y ∈ C ,
θI = idI .

A braided Grothendieck-Verdier structure with a balancing satisfying

DθX = θDX for X ∈ C

will be referred to as a ribbon Grothendieck-Verdier structure. In that case, the balancing
is also called a ribbon twist.

Every ribbon Grothendieck-Verdier categories has a canonical pivotal structure. For
this, we introduce the following definition.

Definition 3.18. Let C be a braided Grothendieck-Verdier category with pivotal structure
ψ (Definition 3.14) and balancing θ. We call ψ and θ compatible if for all X,Y ∈ C the
triangle

C(K,X ⊗ Y ) C(K,Y ⊗X)

C(K,Y ⊗X)

C(K,c−1
X,Y )

ψX,Y

C(K,idY ⊗θ−1
X )

(3.1)
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commutes.

Lemma 3.19. For any braided Grothendieck-Verdier category C, a ribbon twist on C
gives rise to a unique pivotal structure compatible with the ribbon twist.

The statement can be reduced to the following: If we have a balancing and a braiding
and define ψ by (3.1), the so-defined ψ is a pivotal structure. Every ribbon category is an
example of ribbon Grothendieck-Verdier category. We give a simple example that is not
of this form. We will consider more sophisticated examples in the next section.

Example 3.20. In order to discuss a class of ribbon Grothendieck-Verdier categories, let
us recall the construction of pointed braided fusion categories from Abelian group cocycles,
see [EML53] and [EGNO15, Section 8.4]: For a finite Abelian group G, denote by VectG
the category of finite-dimensional G-graded vector spaces over the complex numbers. For
G-graded vector spaces V and W , one can define a monoidal product V ⊗W by

(V ⊗W )g =
⊕
ab=g

Va ⊗Wb for all g ∈ G .

In order to specify the associator, we denote by Cg the ground field C seen as G-graded
vector space supported in degree g. The associator is determined by its values on the
simple objects Cg and given on the simple objects by

αCg1 ,Cg2 ,Cg3
: (Cg1 ⊗ Cg2)⊗ Cg3 −→ Cg1 ⊗ (Cg2 ⊗ Cg3)

(v1 ⊗ v2)⊗ v3 7−→ λ(g1, g2, g3)v1 ⊗ (v2 ⊗ v3) ,

where the numbers λ(g1, g2, g3) ∈ C× form a 3-cocycle λ ∈ Z3(G;C×). In order to
construct a braiding for this monoidal product, we need to complete λ to an Abelian
3-cocycle ω = (λ, τ) ∈ Z3

ab(G;C×), i.e. we additionally need a 2-cochain τ on G such that

λ(g2, g3, g1)τ(g1, g2g3)λ(g1, g2, g3) = τ(g1, g3)λ(g2, g1, g3)τ(g1, g2) ,

λ(g3, g1, g2)
−1τ(g1g2, g3)λ(g1, g2, g3)

−1 = τ(g1, g3)λ(g1, g3, g2)
−1τ(g2, g3) for all g1, g2, g3 ∈ G .

Now a braiding is given by

cCg1 ,Cg2
: Cg1 ⊗ Cg2 −→ Cg2 ⊗ Cg1

v1 ⊗ v2 7−→ τ(g1, g2)v2 ⊗ v1

This monoidal category is rigid with the left and right dual V ∗ of V ∈ VectG given by
(V ∗)g = V ∗

g−1 . Therefore, finite-dimensional G-graded vector spaces with the structure

specified above by means of the Abelian 3-cocycle ω = (λ, τ) give us a braided fusion
category that we denote by VectG

ω. It is pointed in the sense that all simple objects are
invertible, and in fact, all pointed braided fusion categories are of this form.

The Abelian 3-cocycle ω = (λ, τ) can be equivalently described by a quadratic form:
A quadratic form on a finite Abelian group G is a map q : G −→ C× of sets with
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q
(
g−1

)
= q(g) for all g ∈ G such that the symmetric function bq : G×G −→ k× defined

by

bq(g, h) :=
q(gh)

q(g)q(h)
for g, h ∈ G

is a bicharacter in the sense that b(g1g2, h) = b(g1, h)b(g2, h) for g1, g2, h ∈ G. Then by
[EML53] the canonical map

H3
ab(G;C×) −→ Quad(G;C×) , (λ, τ) 7−→ (g 7−→ τ(g, g))

is an isomorphism.

Although VectG
ω is rigid, it can still have Grothendieck-Verdier structures that do not

come from rigidity: Since any Grothendieck-Verdier duality has to be an anti-equivalence
which maps the simple unit Ce to the dualizing object K, the dualizing object must be
simple and hence given by K = Cg0 for some fixed g0 ∈ G. It is easy to observe that
for each such choice, we can find a canonical Grothendieck-Verdier structure with duality
functor Dg0 = Cg0 ⊗ (−)∗. Note that De = (−)∗ coincides with the usual (rigid) duality.

From [Zet18, Theorem 4.2.2], we may now deduce the following statement: Suppose
g0 = h−2

0 for some h0 ∈ G, and denote by q : G −→ C× the quadratic form associated to
the Abelian cocycle ω and by bq : G × G −→ C× the symmetric function corresponding
to q. We define the group morphism η : G −→ C× by η(g) := bq(g, h0) for g ∈ G. Then
VectG

ω together with duality Dg0 = Dh−2
0

and balancing

θCg : Cg −→ Cg

v 7−→ q(g)η(g)v = q(g)bq(g, h0)v =
q(gh0)

q(h0)
v

is a pivotal braided Grothendieck-Verdier category with compatible balancing.

A finite ribbon category C is called modular if it satisfies one of four equivalent non-
degeneracy conditions [Shi19]. One of the equivalent characterizations of modularity is
that the Müger (or E2) center Z2(M) = {X ∈ C | cY,X ◦ cX,Y = idX⊗Y } is Vect.

For ribbon Grothendieck-Verdier categories these conditions aren’t equivalent anymore
leading to the natural question.

Question 3.21. What is a good (algebraic) definition of a modular Grothendieck-Verdier
category?

We suggest that the condition should be that C defines a modular functor. The work
of [BW22] gives a description of this in terms of the connectedness of a certain space
and calls a ribbon Grothendieck-Verdier category connected if it satisfies this condition.
However, we don’t know a precise algebraic condition being equivalent to it.

We conclude this section by explaining the connection between ribbon Grothendieck-
Verdier categories and cyclic algebras. The operad of little disks E2 has as spaces of
operations the rectilinear embeddings of disk into each others and its categorical alge-
bras are braided monoidal categories. Including rotations of disks leads to the framed
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Figure 2: Operations of the framed E2 operad and their composition.

7−→ 1 ∈ C

7−→ ⊗ : C ⊠ C → C

7−→ θ : idC =⇒ idC

7−→ c : X ⊗ Y −→ Y ⊗X

Figure 3: The connection between categorical framed E2-algebras and balanced braided
categories
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little disk operad fE2. In Figure 2 we sketch operations in this operad and their com-
position. Categorical algebras over the framed little disk operad are balanced braided
categories [SW03] (see Figure 3 for a sketch of the connection between embeddings of
disk and their isotopies to algebraic structures). The framed E2 operad admits a cyclic
structure (this is not true for the E2-operad) which comes from an identification with the
operad of genus zero surfaces. The following theorem explains the connection to ribbon
Grothendieck-Verdier categories.

Theorem 3.22 ([MW23c]). Cyclic framed little disk algebras in Rexf and Lexf are ribbon
Grothendieck-Verdier categories in Rexf and Lexf , respectively.

Before discussing more involved examples in detail in the next Section, let us mention a
potential class of examples which would be interesting to work out in detail. Finite dimen-
sional modules over a Hopf-algebra H are a rigid category. Hopf algebroids are a general-
ization of Hopf algebras whose modules only admit a Grothendieck-Verdier duality [All23].
It is known what additional structures on a Hopf algebra are required to make the cate-
gory of finite dimensional modules pivotal, braided and ribbon, these are called pivotal,
quasi-triangular and ribbon Hopf algebras. It seems likely that there are corresponding
notions for Hopf algebroids giving their modules the corresponding Grothendieck-Verdier
notion.

Question 3.23. What are the precise definition of a pivotal and ribbon Hopf algebroid?

4 Some algebraic results and examples

In this Section we will discuss some examples and algebraic properties of GV-categories.
These examples illustrate that in many applications it is natural to consider these weaker
structures of rigidity.

4.1 VOAs. We give an informal and short summary of [ALSW21] avoiding technical
details or precise definitions related to VOAs and their modules. We refer to the literature
for more details. Let V be a VOA. VOA modules model point insertions or defects
in the corresponding chiral conformal field theory. They consist of a vector space M
together with linear action maps V ⊗M −→ M((z)) satisfying among other conditions
holomorphic analogs of the usual definition of modules over an algebra. The category of
all VOA modules is often too wild to have good properties, such as a monoidal product,
in general. For this reason, one usually restricts to convenient subclasses of modules (and

VOAs) with compatible gradings such that M =
⊕

b∈B,h∈CM
(b)
h with finite dimensional

components where B is an abelian group containing another abelian group A grading V .
In good situations taking the contragredient, i.e. degree-wise dual module

M ′ :=
⊕

b∈B,h∈C

(
M

(b)
h

)∗

equips the category of convenient V modules with a ribbon Grothendieck-Verdier struc-
ture [ALSW21, Theorem 2.12].
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4.2 Endofunctors and bimodules. This example follows [FSS20, Section 3.5]. Let C
be a finite category and consider the monoidal category AL := HomLexf (C, C). The right
and left duals in A are the right and left adjoint functors, respectively. However, for a
right exact functor to have an adjoint which is also right exact the functor needs to be
exact. Meaning that the dualizable objects are exactly the exact functors.

We define a Grothendieck-Verdier duality by defining the functor D(F) of a left exact
functor F : C −→ C to be

D(F)(−) :=
∫
a∈C
C(a,−)⊗ F l.a.(a)

via the equivalence between right exact and left exact functor from [FSS20, Theorem 3.12].
Its value on the identity, the dualizing object, is the Nakayama functor. Dually, we can
define a Grothendieck-Verdier structure on AR := Rexf(C, C) by the formula

D(F)(−) :=
∫ a∈C

C(−, a)∗ ⊗ F r.a.(a) .

If we chose an algebraA such that there exists an equivalenceA-mod∼= C, the Eilenberg-
Watts theorem identifies AR with A-Bimod with its usual tensor product. The category
A-Bimod is an example of a cp-rigid category and hence so is A. As mentioned above every
cp-rigid category has a Grothendieck-Verdier duality, which is the one just described. In
that description D of a bimodule M is M∗ the dual bimodule [FSSW23]. In general, A∗

is not invertible as a bimodule and hence A-Bimod is not a r-category. A trivialization of
A∗ as a bimodule is the same as a symmetric Frobenius algebra structure on A. Hence,
bimodule categories over symmetric Frobenius algebras have a natural structure of a r-
category, which we expect to be pivotal. The dual left exact tensor product can be
described in terms of a co-algebra structure on A and we refer to [FSSW23] for details.

4.3 Drinfeld centers. In this section, we explain that even if one is only interested
in tensor categories in the sense of [EGNO15] which are rigid by definition, there are
situations where one is forced to consider the weaker concept of Grothendieck-Verdier
categories. Let (C,⊗, 1) be a monoidal category. The objects of the Drinfeld center Z(C)
are pairs (c, βc,−) of an object c ∈ C equipped with a half braiding βc,− : c⊗− =⇒ −⊗ c.
The category Z(C) is canonically braided monoidal. Furthermore, if C is rigid, so is Z(C)
with duality induced by the duality in C. Similarly, a pivotal structure ω for C induces a
canonical pivotal structure for Z(C). A pivotal structure on a braided category defines a
canonical twist leading to the following natural question originally raised by Müger [Mü03]

Under which conditions is the Drinfeld center of a pivotal tensor category a ribbon
category?

For semi-simple categories with finitely many objects, Müger already gave an answer
by showing that Z(C) is ribbon if and only if C is a spherical category (we will recall
the definition momentarily). This result has been extended to arbitrary pivotal finite
tensor categories by Shimizu [Shi23]. The restriction to spherical categories seems slightly
arbitrary and indeed disappears if we allow ourselves to work in the larger world of ribbon
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Grothendieck-Verdier categories. For this, we need to introduce an important object in
every finite tensor category, called the distinguished invertible object α ∈ C, which can,
for example, be defined as the end

α :=

∫
X∈C
C(X, 1)⊗X ∈ C .

It features in the Radford isomorphism from [ENO04, Theorem 3.3]

−∨∨∨∨ ∼= α⊗−⊗ α−1 .

A finite tensor category is called unimodular if the distinguished invertible object α is
isomorphic to the monoidal unit 1. Choosing a trivialization of α induces a trivialization
of −∨∨∨∨, which does not depend on the choice. In a unimodular pivotal finite tensor
category, there are now two different trivializations of −∨∨∨∨. A unimodular pivotal finite
tensor category is spherical if these agree [DSPS20].

Using the fact that α is invertible, we get monoidal isomorphisms

δ+ : α⊗− ∼= −∨∨∨∨ ⊗ α .

Combining δ+ with the pivotal structure equips α with a canonical half-braiding:

Lemma 4.1. For a pivotal finite tensor category C, the natural isomorphism σ : α⊗− ∼=
−⊗ α whose component at X ∈ C is defined by

σX : α⊗X
δ+X−−−→ X∨∨∨∨ ⊗ α

ω2
X

−1

−−−−−→ X ⊗ α

equips the distinguished invertible object α with a half braiding, i.e. α can be seen as
object in the Drinfeld center Z(C).

Since α is invertible, this is a dualizing object in Z(C). The main result of [MW24b]
shows that this induces a ribbon Grothendieck-Verdier structure on Z(C).

Theorem 4.2. Let C be a pivotal finite tensor category. Then the distinguished invertible
object of C equipped with the half braiding induced by the Radford isomorphism and the
pivotal structure of C is a dualizing object that makes Z(C) a ribbon Grothendieck-Verdier
category. Up to equivalence, this is the only ribbon Grothendieck-Verdier structure on
Z(C) that extends the canonical balanced braided structure.

It is straightforward to see that the triviality of α as an object of Z(C) is equivalent
to the C being spherical and hence we can conclude from the uniqueness in the theorem
above:

Corollary 4.3. For the ribbon Grothendieck-Verdier duality on the Drinfeld center Z(C)
of a pivotal finite tensor category C, the following are equivalent:

1. The dualizing object is isomorphic to the unit in Z(C).
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2. C is spherical.

3. The Grothendieck-Verdier duality of Z(C) agrees with the rigid duality.

4. Z(C) with its canonical balanced braided structure is a modular category.

It is natural to extend the question to pivotal Grothendieck-Verdier categories.

Question 4.4. Under which conditions is the center of a pivotal Grothendieck-Verdier
category a ribbon Grothendieck-Verdier category?

4.4 Properties. We will now summarize some algebraic results regarding Grothendieck-
Verdier categories. This will unavoidably leave out some important results.

Proposition 4.5. Let C be a Grothendieck-Verdier category and X ∈ C dualizable. Then
DX = X∨ ⊗K. More generally, D(Y ⊗X) ∼= X∨ ⊗D(Y ).

Proof. It is easy to verify that X∨ ⊗D(Y ) represents the functor C(K,Y ⊗X ⊗−).

Recall that Grothendieck-Verdier categories in Lexf can be understood as categorifica-
tions of Frobenius algebras and as such should be equipped with a nondegenerate pairing.
A nondegenerate pairing on an object C ∈ Lexf is a left-exact functor κ : C ⊠ C −→ Vect
establishing C as its own dual in the homotopy 1-category of Lexf , i.e., there exists a co-
pairing ∆ : Vect −→ C⊠C satisfying the usual snacke identities up to natural isomorphism.

Proposition 4.6. Let C be a Grothendieck-Verdier categroy in Lexf . Then

κ : C ⊠ C −→ Vect

X ⊠ Y 7−→ C(K,X ⊠ Y ) ∼= C(DX,Y )

defines a nondegenerate pairing with corresponding copairing

∆ : Vect −→ C ⊠ C

C 7−→
∫ X∈C

X ⊠DX .

(Here
∫ X∈C

X ⊠DX is a coend)

The dual statement holds in Rexf replacing the coend with an end and C(K,−) with
C(−,K)∗.

Remark 4.7. Note that for this result to be true, it is important to work in Lexf instead of
the 2-category of ordinary categories because the only self-dual object (up to equivalence)
of Cat is the category with one object and one morphism.

A monoidal category C is said to have left/right internal homs if there are natural
isomorphisms C(X ⊗ Y, Z) ∼= C(X,Homr(Y,Z))/C(X ⊗ Y, Z) ∼= C(Y,Homl(X,Z)).
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Proposition 4.8. Let (C,⊗, 1,K) be a Grothendieck-Verdier category in Rexf . C has left
and right internal homs defined by

Homr(X,Y ) := D(X ⊗D−1Y ) and Homl(X,Y ) := D−1(DX ⊗ Y )

and D(−) = Homr(−,K).

Dually a Grothendieck-Verdier category (C,⊙,K, 1) in Lexf has an internal left and
right co-homs.

Remark 4.9. This provides a different perspective on the definition of Grothendieck-
Verdier categories: Let C be a closed monoidal category, i.e. one with the property of
admitting internal homs Homr(−,−). Hence, for every object K ∈ C we have natural
isomorphisms C(X ⊗ Y,K) ∼= C(X,Homr(X,K)). Now a Grothendieck-Verdier category
can equivalent defined as a closed monoidal category C together with the choice of an
object K ∈ C such that D(−) := Homr(−,K) : C −→ Cop is an equivalence.

How many Grothendieck-Verdier structures are there on a given category?
It is a natural question how to describe the space of Grothendieck-Verdier structures on
a given monoidal category (C,⊗, 1) in Lexf . For this, we first need to introduce the 2-
groupoid of all Grothendieck-Verdier categories GVCat and hence we need to understand
the right type of morphisms to consider. The objects of GVCat are Grothendieck-Verdier
categories, its 1-morphisms are monoidal functors F : C −→ D that preserve the pairing
and copairing (concretely this means that F has a non-degenerate pairing seen as an object
in the arrow category ar(Lexf)), 2-morphisms are pairing preserving monoidal natural
transformations. Let C be a monoidal category we define the groupoid GV(C) to be the
(homotopy) fiber of the map GVCat −→ ⊗Cat.

Proposition 4.10 (Essentially Proposition 1.3 in [BD13]). Let C be a monoidal category.
Then GV(C) is either empty or a torsor over Pic(C) the Picard groupoid of ⊗-invertible
objects in C.

There are analogues classifications of the spaces of pivotal and ribbon Grothendieck-
Verdier categories.

Proposition 4.11. Let C be a monoidal category. Then pGV(C) is either empty or a
torsor over pairs of an invertible object x ∈ Pic(C) together with a natural monoidal
isomorphism x−1⊗ (−)⊗x =⇒ id whose component at D2(K) (combined with the pivotal
structure for D) is the canonical map from [BD13, Equation (1.11)] in the Grothendieck-
Verdier structure with respect to K ⊗ x.

Proof. By the previous proposition all Grothendieck-Verdier structures on C are given by
tensoring with an invertible element x ∈ Pic(C), which changes D to Dx = D(−)⊗ x and
hence D2

x(−) ∼= x−1 ⊗ D2(−) ⊗ x. Now the statement follows from [BD13, Proposition
5.7].
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Theorem 4.12 ([MW24b]). For any balanced braided category A in Lexf , the groupoid of
ribbon Grothendieck-Verdier structures on A is a torsor over Pic(Zbal

2 (A)), where Zbal
2 (A)

is the balanced Müger center consisting of elements x ∈ A which double braid trivially
with all other elements and satisfy θx = idx.

Remark 4.13. This theorem, in particular, implies that balanced categories with triv-
ial Müger center have at most one choice of dualizing object making them a ribbon
Grothendieck-Verdier category. We use this fact to conclude the uniquness in Theorem 4.2.
It can also be useful for showing that two ribbon Grothendieck-Verdier structures agree.
This was used for example in the proof of the main theorem of [MSWY23].

r-categories An interesting class of Grothendieck-Verdier categories are those with du-
alizing object K = 1. In [BD13] these are called r-categories.

It is an interesting question when an r-category is actually rigid. In general there are
many examples of non-rigid r-categories for example bi-modules over a non-seimi simple
symmetric Frobenius algebra as explained in Section ??. In the semi-simple braided case
a recent result of [EP24] shows that braided r-categories are often rigid.

Proposition 4.14. Every semisimple braided r-category of moderate growth is rigid. In
particular, finite semisimple braided r-categories are rigid.

5 Modular and ansular functors

In this section, we will discuss how to construct interesting objects in quantum topology
from pivotal and ribbon Grothendieck-Verdier categories including modular functors. A
common source of modular functors are restrictions of once extended 3-dimensional topo-
logical field theories to two dimensional surfaces. These are classified by modular fusion
categories [BDSPV15]1 Dropping the assignments on 3-manifolds leads to a weakening of
the notion of duality and does not force semi-simplicity. We will build our way up to
modular functors from simpler quantum topological objects classified by notions of cate-
gories with Grothendieck-Verdier duality. The following diagram shows these structures

1There are technical details missing in the reference that so far have not appeared in the literature.
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and their connections:

categorified open TQFTs pivotal Grothendieck-Verdier categories

ansular functors ribbon Grothendieck-Verdier categories

modular functors connected ribbon Grothendieck-Verdier categories

non-semisimple 3D TQFTs modular tensor categories

3DTQFTs modular fusion categories

[MW25a]

[MW23b]

[BW22]

[DRGG+22]

[BDSPV15]

5.1 Open categorified topological field theories. Roughly speaking, an open topo-
logical field theory with values in a symmetric monoidal higher category C (we will mostly
consider C = Vect and C = Lexf) assigns an object A(I) ∈ C to an interval and a morphism
A(Σ) : A(I)⊗n −→ A(I)⊗m to every surface Σ with n ingoing and m outgoing marked
intervals in its boundary equipped with an action of the group of diffeomorphisms of Σ,
such that gluing of surfaces corresponds to the composition of morphisms. It is important
to note that an open topological quantum field theory does not associate any quantities
to manifolds without boundary.

Every surface with boundary can be constructed from gluing together two dimensional
disks along marked boundary intervals. The structure of those are govern by a cyclic
operad which is equivalent to the associative operad. Hence, to every open field theory we
can associate a cyclic associative algebra in C describing its value on genus zero surfaces.
This turns out to be an equivalence, i.e. there are no additional relations corresponding
to higher genus surfaces.

Theorem 5.1 ([Cos07, Gia11, MW25a, Ste25]). Let C be a symmetric monoidal higher
category. There is an equivalence between open topological quantum field theories with
target C and cyclic associative algebras in C.

We already briefly discussed above that cyclic associative algebras in the category of
vector spaces are symmetric Frobenius algebras and that cyclic associative algebras in Lexf

correspond to pivotal Grothendieck-Verdier categories. Often topological field theories
who assign vector spaces to top-dimensional manifolds and categories in codimension 1
are called categorified topological field theories.

Theorem 5.2 ([MW25a]). Open categorified topological field theories with value Lexf or
Rexf are classified by pivotal Grothendieck-Verdier categories.

In Figure 4 we sketch the connection between their structure and the value of an open
topological quantum field theory on various surfaces. These can be used to compute the
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Figure 4: Values of an open topological field theory on generating bordisms
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value on aribitrary surfaces, for example for the anulus without marked boundary intervals
we find

C(K,F) with F := ⊗
(∫ X∈C

DX ⊠X

)
The object F generalizes the Lyubashenko coend [Lyu95b, Lyu96] of a finite tensor cat-

egory. For this reason, we sometimes also use the notation F =
∫ X∈C

DX ⊗ X, but we

want to emphasize that the proper definition is really F := ⊗
(∫ X∈C

DX ⊠X
)
.

5.2 Ansular functors. One might expect a similar strategy to work for the classification
of modular functors (also known as closed categorified topological field theories) and indeed
this approach is successful when trying to classify 2-dimensional topological quantum field
theories with values in vector spaces. The genus zero part is described by the cyclic framed
E2 operad whose algebras in vector spaces are exactly commutative Frobenius algebras
which classifies two dimensional topological quantum field theories with target vector
spaces. However, this becomes false when targets with higher categorical structures, such
as Lexf or Rexf , are considered. The reason for this is that there are additional relations
and generators corresponding to automorphisms of higher genus surfaces, and indeed if
the target has arbitrary high morphisms the additional relations correspond to surfaces of
arbitrarily high genus.

There is a different structure which is instead classified by their genus zero restrictions,
which are also encoded by the cyclic framed E2 operad. The corresponding topological
objects are 3-dimensional handlebodies H. These are compact 3-dimensional manifolds
with boundary that can be constructed by gluing three balls D3 along two dimensional disks
embedded in their boundary. For a handlebody Hg,n of genus g with n embedded disks in
its boundary, the handlebody group is defined as the group of connected components of
the diffeomorphism group of Hn,g that preserves the embedded disks. Handlebody groups
are an active area of research in low-dimensional topology, see for example [Hen18] for a
review.

Example 5.3. Let us look at the example of a solid torus H1,0. It is well-known that
Diff(H1,0) ≃ T2 ⋊ (Z× Z2), where Map(H1,0) ∼= Z× Z2 is the mapping class group of the
solid closed torus. This is a consequence of results in [Gra73, Hat76, Waj98]; a recollection
is given in [MW22, Section 2]. A generator for the Z-factor of Map(H1,0) is the Dehn twist
T along any properly embedded disk in H1,0; a generator for the Z2-factor is the rotation
by π around any axis in the plane in which H1,0 lies. For later use, let us just recall
that we can see Map(H1,0) as a subgroup of the mapping class group Map(T2) ∼= SL(2,Z)
and hence as a 2 × 2-matrix. Under the inclusion Map(H1,0) ⊂ Map(T2) ∼= SL(2,Z), the
generators T and R are mapped as follows:

T 7−→
(
1 0
1 1

)
, R 7−→

(
−1 0
0 −1

)
. (5.1)

Example 5.4. Genus zero ..
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Figure 5: The values of an ansular functor on some bordisms

Ansular functors [MW23b] are an analog of open topological field theories that replace
surfaces with boundary and marked intervals by handlebodies with embedded disks in
their boundary. More, concretely an ansular functor with values in C assigns an object
A(D2) ∈ C to a 2-dimensional disk and a morphism A(H) : A(D2)⊗n −→ A(D2)⊗m to
every handlebody H with n ingoing and m outgoing disks in its boundary equipped with
an action of the group of diffeomorphisms of H, such that gluing of surfaces corresponds to
the composition of morphisms. The restriction to genus zero of every ansular functor is a
cyclic framed E2-algebra and this map from ansular functors to cyclic framed E2-algebras
turns out to be an equivalence

Theorem 5.5 ([MW23b, Gia11, Ste25]). Let C be a symmetric monoidal higher category.
There is an equivalence between ansular functors with target C and cyclic framed E2

algebras in C.

In particular, ansular functors with values in Lexf and Rexf are equivalent to ribbon
Grothendieck-Verdier categories. In Figure 5 we sketch the connection between topology
and algebra.

The non-degenerate pairing on a ribbon Grothendieck-Verdier category topologically
corresponds to a bend cylinder and can be used to turn outgoing boundaries into incoming
ones. It is often convenient to think of all boundary components as incoming, and hence
we can associated to a handlebody a linear functor A(Hg,n) : C⊠n −→ Vect or after fixing
n-boundary labels X1, . . . Xn ∈ C a vector space. Let us describe the action in the case of
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H1,0 explicitly

Proposition 5.6. Let C be ribbon Grothendieck-Verdier category C in Lexf with dualizing
object K and duality functor D. The Map(H1,0)-representation that the ansular functor
associated to C gives rise to has the underlying vector space C(K,F) and can be explicitly
described as follows:

1. The mapping class group element T (Dehn twist along the waist of the solid closed
torus, see (5.1)) acts by the automorphism of C(K,F) that is induced by the auto-
morphism

t : F =

∫ X∈C
X ⊗DX θX⊗DX−−−−−−→

∫ X∈C
X ⊗DX = F ,

where θX : X −→ X is the balancing.

2. The mapping class group element R (rotation by π, see (5.1)) acts by the automor-
phism of C(K,F) that is induced by the automorphism

r : F =

∫ X∈C
X ⊗DX

(θDX⊗X)◦cX,DX−−−−−−−−−−−−→
∫ X∈C

DX ⊗X ∼=
∫ X∈C

X ⊗DX = F .

For a general handlebody we have.

Proposition 5.7. Given an arbitrary ansular functor with values in Lexf , let C ∈ Lexf

be its genus zero part, i.e. a ribbon Grothendieck-Verdier category. Then the value of
the ansular functor on a handlebody Hg,n of genus g and n embedded disks labeled by
X1, . . . , Xn ∈ C (we pick here an order for the embedded disks) is isomorphic to the
morphism space

C(K,X1 ⊗ · · · ⊗Xn ⊗ F⊗g) .

We can express the locality with respect to gluing directly in terms of these vector
spaces associated to surfaces using left exact coends:

Theorem 5.8 ([MW23c]). Let C be a ribbon Grothendieck-Verdier category in Lexf with
dualizing object K. For integers g, n ≥ 0 and any family X1, . . . , Xn ∈ C of objects in C,
the finite-dimensional morphism space

Vg,n(X1, . . . , Xn) := C(K,X1 ⊗ · · · ⊗Xn ⊗ F⊗g) (5.2)

defined using the canonical coend F =
∫ X∈C

X ⊗ DX comes naturally with an action
of the handlebody group. The vector spaces (5.2) behave locally under the gluing of
handlebodies. More explicitly, there are canonical isomorphisms∮ Y ∈C

Vg,n+2(−, Y,DY ) ∼= Vg+1,n(−) ,∮ Y ∈C
Vg1,n+1(−, Y )⊗ Vg2,m+1(−, DY ) ∼= Vg1+g2,n+m(−)
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of left exact functors C⊠n −→ Vect and C⊠(n+m) −→ Vect, respectively, where
∮
is the left

exact coend. These isomorphisms are compatible with the handlebody group actions.

An analogous statement holds for open categoriefied topological field theories.

5.3 Modular functors. We are now able to come back to the description of modular
functors. They are roughly the structure one gets by replacing open surfaces or handlebod-
ies in the previous examples by surfaces with boundary circles. However, they involve an
additional structure that was not present in the previous examples, namely an anomaly
corresponding to the projectivity of the flat connection on spaces of conformal blocks.
This means that the mapping class groups of surfaces will only act projectively instead of
linearly. We will mostly not mention this subtlety explicitly, but it is always present in
the background.

Pulling back along the restriction of handlebodies to their boundary surfaces, induces
a map from modular functors to ansular functors and hence ribbon Grothendieck-Verdier
categories. In [BW22] it is shown using factorization homology techniques that it is a
property (called connectedness) for the ansular functor associated a ribbon Grothendieck-
Verdier category C to extend to a modular functor.

Theorem 5.9 ([BW22]). The 2-groupoid of modular functors with values in Lexf or Rexf

is equivalent to the 2-groupoid of connected ribbon Grothendieck-Verdier categories.

The notion of connectedness is defined in terms of the connectedness of certain groupoids
constructed using factorization homology. It is known that this condition is implied by
cofactorizability (an explicit algebraic condition). This in particular, implies that all mod-
ular tensor categories are examples of connected ribbon Grothendieck-Verdier categories.
The resulting modular functor agrees with the one constructed by Lyubashenko [Lyu95a].

There are two natural open questions in this setting.

Question 5.10. What is an algebraic characterization of connected ribbon Grothendieck-
Verdier categories?

Question 5.11. When is the representation categories of a VOA connected?

The underlying ansular functor can be used to study many of the properties of the
corresponding modular functor. For example, the vector space associated to a surface will
be the one we computed in Proposition 5.7 and the action of mapping class group elements
which extend to the interior of a 3-dimensional handlebody will agree with the action of
this automorphism of the handlebody. In [MW25b] we use this approach to derive general
algebraic results for the order of Dehn twists.

Theorem 5.12 ([MW25b]). Let A be a modular category and denote by FA its modular
functor. Let d be any Dehn twist about a non-separating essential simple closed curve on
a closed surface Σ with genus g ≥ 1. Then d acts on the space of conformal blocks FA(Σ)
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by a linear automorphism FA(d) whose order in PGL(FA(Σ)) is equal to the order |θ| of
the ribbon structure of A. In particular, FA(d) has infinite order if and only if the ribbon
structure has infinite order.

Let d be any Dehn twist about a separating essential simple closed curve on a closed
surface Σ with genus g ≥ 2 that separates the surface into pieces of genus g′ and g′′. Then
d acts on the space of conformal blocks FA(Σ) by a linear automorphism FA(d) whose
order in PGL(FA(Σ)) is equal to min{|θA⊗g′ |, |θA⊗g′′ |}, where A =

∫
X∈AX ⊗ X

∨ ∈ A is
the canonical end of A.

Recall that to a VOA V we expect to be able to assign vector bundles of conformal
blocks over the moduli space of Riemann surfaces equipped with a flat connection which
are compatible with cutting and gluing. Verifying that they correspond to an actual mod-
ular functor is a largely open problem. However, the recent paper [DW25] studies the class
of strongly rational VOAs in detail and shows that the algebraic geometry construction
of conformal blocks leads to a topological modular functor. Hence, according to the clas-
sification, there is a corresponding ribbon Grothendieck-Verdier category CV that encodes
this functor. Furthermore, in [DW25] it is shown that CV is a modular fusion category
and agrees with the category of VOA-modules as a linear category. It is still open whether
they agree as modular fusion categories. Extensions of the rational case are largely open:

Question 5.13. Do conformal blocks of vertex operator algebras form a modular func-
tors? A hard part is to show that they are local in the surfaces, see [GZ23, GZ24, GZ25]
for some recent progress for certain C2-cofinite VOAs.

In general, vector spaces of conformal blocks don’t need to be finite dimensional and
categories of boundary labels can have (continuous) infinitely many simple objects. In
these settings, the bicategories Lexf and Rexf are too small to be a home for such con-
structions. The classification results and constructions for modular functors work in an
arbitrary bicategory. However, it isn’t obvious what the right setting to use is.

Question 5.14. What is a good setting in which we can construct modular functors
using quantum topological and algebraic methods from VOAs in most generality? What
are algebra geometric counterparts of these constructions and how do they compare?

We conclude this section with Figure 6 that summarizes the connections between low-
dimensional topology and GV categories discussed.

5.4 Topological interpretations of algebraic conditions. There are various alge-
braic conditions we can impose on a pivotal or (connected) ribbon Grothendieck-Verdier
categories. In this section, we explain the geometric counterparts to these. The strongest
condition we could impose is that C is a modular fusion category. It is believed (and
there is an unfinished proof available [BDSPV15]) that they correspond to 3-dimensional
once extended topological field theories. The modular functor corresponding to C is the
restriction of this TQFT to surfaces.
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Figure 6: Caption
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A less restrictive condition that we can ask is that C is an r-category, i.e. K = 1, this
means that the value of the corresponding open field theory on a cap is C(K,−) = C(1,−).
We have isomorphisms HomVect(k, C(1, X)) ∼= C(1, X) and hence an adjunction 1 ⊣ C(1,−).
Hence, we have shown.

Proposition 5.15. Let A be an open topological field theory, an ansular or modular
functor with values in Lexf . The corresponding Grothendieck-Verdier category is an r-
category if and only if the values on a cap and cup are adjoint to each other: A ( ) ⊣ A ( ).

The dual statement holds in Rexf which follows from the adjunction C(−, 1)∗ ⊣ 1, since
the value on a cup is C(−,K)∗ in that case. Note that both these adjunctions always
hold for restrictions from 3-dimensional topological field theories, because they can be
implemented via 3-dimensional cobordisms.

Similarly, we can ask about the adjunctions between arbitrary surfaces. We will look
at this question for open topological field theories, but in general the same techniques
apply. Using a pair of pants decomposition, it is enough to additionally describe the

algebraic consequences of A
( )

⊣ A
( )

. For this, it is helpful to recall the following

notion: a monoidal category is called p-rigid if all its projective objects have duals. In
the setting of presentable categories, it is more natural to ask all compact projective
objects to have duals, leading to the notion of cp-rigidity introduced in [BJS21]. For finite
categories, all objects are compact, and hence there is no difference between the notions.
It is shown in [BJS21] that p-rigid categories are equivalent to rigid algebras in the sense
of Gaitsgory, i.e. those monoidal categories where the monoidal product admits a right
adjoint C −→ C ⊠ C which is a bimodule functor. Note that this is a categorification of
the notion of sperable algebras. A pivotal sturcture on a p-rigid category is a natural
(monoidal) isomoprhism P ∼= P∨∨ on the subcategory of projective objects. From the

topology of 2-dimensional surfaces it follows that the functor A
( )

is always a bimodule

functor. This suggests a connection between p-rigidy and the adjunction A
( )

⊣ A
( )

and indeed in [MW25a] we show (we refer to the paper regarding the technical aspect of
coherence isomorphisms):

Theorem 5.16. Let C be a cyclic associative algebra in Rexf , and A its associated open
topological field theory. Then the following are equivalent:

1. There are adjunctions A
( )

⊣ A
( )

and A ( ) ⊣ A ( ) such that the natural

isomorphisms making A
( )

a bimodule functor agree with those coming from the

adjunction.

2. C is a pivotal p-rigid category.

Again, these types of adjunctions hold in any setting which comes from a 3-dimensional
topological quantum field theory because they can be implement via 3-dimensional cobor-
disms. We do not need to add all 3-dimensional bordisms to enforce the adjunctions. It is
enough to ask the open topological field theory to be functorial with respect to embeddings

29



Figure 7: Embeddings corresponding to adjunctions.

of manifolds. In Figure 7 we explain how this implies the adjunctions in Theorem 5.16.
We expect that we can add this functoriality as an additional equivalent characterization
of the conditions in Theorem 5.16. The reason for this is that it implies 1. which is
equivalent to 2. and the open topological field theory corresponding to a pivotal p-rigid
category should have a skein theoretic description which is manifestly functorial with re-
spect to embeddings. We explain the skein theoretic construction in more detail in the
next section for pivotal rigid categories. The details of this shouldn’t be hard to work out
and we encourage the interested reader to do so!

6 Skein theoretic methods

In case the Gorthendieck-Verdier category is rigid, there are additional skein theoretic
description of the corresponding objects in quantum topology using the recently introduced
admissible skein modules of [CGPM23]. The geometric and algebraic perspectives are often
complementary and enriching to each other.

6.1 String nets. 2-dimensional skeins are often also called string-nets due to their con-
nections to so called string-net models in condensed matter physics [LW05] and we will
follow that convention here. Let C be a pivotal category. The pivotal structure is ex-
actly the additional structure needed to consistently evaluate string diagrams drawn in
a plane. More concretely, every string diagram drawn on a disk can be evaluated to a
single morphism in C, see Figure 8 for a sketch. To every 2-dimensional manifold Σ with
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Figure 8: An example for the evaluation of string diagrams in a pivotal category.

marked points in their boundary labeled with a sign indicating whether the edges are in
or outgoing, as well as an object X ∈ C, we can assign a vector space which is the quotient
of the vector space generated by all graphs labeled by projective objects of C in Σ com-
patible with the boundary labels, by those relations which are induced by the graphical
calculus in embedded disks. We denote this vector space by sn(Σ; (X1,±), . . . (Xn,±)).
The restriction to projective elements is known as the admissibility condition and is vital
to get sensible structures for non-semisimple categories. Furthermore, there is a natural
category associated to every 1-dimensional category:

Definition 6.1. For a pivotal finite tensor category C and a compact one-dimensional
manifold S with boundary, we denote by snC(S) the category whose objects are collections
of finitely many points in the interior S, at least one in each component of S, and each
decorated with a projective object in C. For B,C ∈ snC(S), the morphism space is defined
as

snC(S)(B,C) := snC(S × [0, 1]; (B,−), (C,+)) ,

The composition is defined via stacking cylinders.

It is immediate from the definition of snC(S) that for any surface Σ with incom-
ing boundary ∂−Σ (union of the closed and open boundary components) and outgoing
boundary ∂+Σ, the spaces snC(Σ;−) assemble into a linear functor

snC(Σ) : snC(∂+Σ)op × snC(∂−Σ) −→ Vect ,

Such functors are the natural 1-morphisms in the following bicategory:

Definition 6.2. We denote by Bimod the bicategory

• whose objects are k-linear categories,
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• whose 1-morphisms are bimodules, i.e. a 1-morphism C −→ D is a k-linear functor
C ⊗Dop −→ Vect (Vect is the category of k-vector spaces; composition is defined via
coends),

• and whose 2-morphisms are natural transformations between bimodules.

The näıve monoidal product defines the structure of a symmetric monoidal category on
Bimod. The monoidal unit is 1k.

The assignment S 7−→ snC(S) and (Σ : S− −→ S+) 7−→ snC(Σ) : snC(S−)⊗snC(S+)op −→
Vect defines an open closed modular functor [MSWY23] and hence in particular a categori-
fied open topological field theory (restricting to manifolds with boundaries and embedded
intervals) and a modular functor (restricting to surfaces and circles) with values in Bimod.
There is a natural completion procedure that produces versions valued in Rexf and sends
snC(S) to SNC(S) := Fun(snC(S)

op,Vect), see [MSWY23, Section 5] for details. We have
the following comparison results:

Theorem 6.3 ([MW25a]). Let C be a pivotal finite tensor category. The categorified
open field theory associated with it by Theorem 5.1 agrees with the open part of SNC .

Theorem 6.4 ([MSWY23]). Let C be a pivotal finite tensor category. The modular
functor associated with Z(C) equipped with its ribbon Grothendieck-Verdier structure
from Section 4.3 by Theorem 5.9 agrees with the modular functor constructed from SNC .

Remark 6.5. By results of Kirillov and Bartlett the Levin-Wen string-nets of a spherical
fusion category C describe the Reshetikhin-Turaev-type modular functor for the Drinfeld
center Z(C). The above theorem generalizes this statement to arbitrary, possibly non-
semisimple pivotal finite tensor categories.

6.2 3-dimensional skeins. The story for pivotal finite tensor categories generalizes to
finite ribbon categories (which are rigid by definition): Let C be a finite ribbon category.
The Reshetikhin-Turaev graphical calculus allows us to evaluate string diagrams drawn in
3-dimensional balls or cubes; see Figure ?? for an example. We can assign to every 3 man-
ifold M with labels in its boundary a vector space freely generated by ribbon graphs in M
labeled with projective objects of C and morphisms between them modulo those relations
which hold in embedded cubes. This is the admissible skein module from [CGPM23]. Fur-
thermore, we can assign to all 2-dimensional surfaces a linear skein category skA(Σ) and
its cocompletion SkA(Σ). From this we can define an ansular functor whose value on D2 is
SkA(D2) and whose value on a handlebody H is SkA(H). This ansular functor agrees with
the one classified operadicaly by C up to an interesting detail. Recall from Theorem 4.12
that ribbon Grothendieck-Verdier structures on C are classified by the invertible elements
of Zbal

2 (C). The distinguished invertible element α and its inverse α−1 are elements of
Zbal
2 (C) and hence we can twist the ribbon Grothendieck-Verdier structure by them. We

denote these twists by Cα and Cα−1 , respectively. Now we can state the comparison:
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Theorem 6.6 ([MW24a]). Let A be a finite ribbon category. Then the following con-
structions agree, up to canonical equivalence, as Rexf-valued ansular functors:

• The modular extension Âα−1 of Aα−1 seen as Rexf-valued modular Hbdy-algebra, i.e.
the ansular functor associated to Aα−1 .

• The admissible skein modules for A, seen as Rexf-valued ansular functor after a finite
free cocompletion.

The connection between skein theory on the one hand and algebraic and operadic tools
on the other hand has many useful applications which allow us to translate results back
and forth, which we will not discuss in detail here, but we refer to [MW24a] for more
details.

7 Classification of consistent systems of correlators

After this long detour through quantum topology and algebra we can briefly come back to
conformal field theories. To construct a full CFT from its chiral and anti-chiral parts, one
needs to select single valued correlation functions, which are compatible with cutting and
gluing. Single-valued correlation functions correspond to flat sections of the vector bundle
which combines the holomorphic and anti-holomorphic conformal blocks or equivalently
mapping class group invariant elements of the vector space the corresponding modular
functor associates to the topological surface. We call a collection of such elements a
consistent system of correlators and give a more precise definition momentarily. In the
influential works [FRS02, FRS04a, FRS04b, FRS05, FFRS05] consistent correlators in
rational were classified using 3-dimensional topological field theories.

The case most often considered is the one in which the modular functor corresponding
to the anti-chiral part is classified by Cop the opposite of the category describing the
chiral conformal blocks (from some perspectives, it is more natural to consider C which is
often isomorphic). However, there are also so called heterotic CFTs where this isn’t the
case. For modular tensor categories we have C ⊠ Cop ∼= Z(C). From this perspective, the
description in terms of string nets from Theorem 6.4 covers the most common case. In the
rational case, string nets have been used successfully in [FSY21] to construct and classify
consistent systems of correlators.

Let us now define the corresponding structure in more detail in the setting of modular
functors. For this, let F be a modular functor. A consistent system of correlators for F
consists of the following data

• The field content which is an object F ∈ F(S1) in the category the modular functor
assigns to S1.

• For every surface with boundary Σg,n an element in the vector space F (Σg,n) ∈
F(Σg,n;F, . . . , F ) of conformal blocks with boundary label F inserted in each bound-
ary component.

such that F (Σ ⊔Σ′) = F (Σ)⊗ F (Σ′) and under the map

F(Σg,n;F, . . . , F )⊗F(Σg′,n′ ;F, . . . , F ) −→ F(Σg,n ◦Σg′,n′ ;F, . . . , F )
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corresponding to the gluing of one or multiple boundary components F (Σg,n)⊗ F (Σg′,n′)
gets mapped to F (Σg,n ◦Σg′,n′).

This has a nice interpretation in terms of relative or twisted field theories [FT14,
ST11, JFS17]. If we consider a modular functor F as a symmetric monoidal 2-functor
F : Bord2 −→ Rexf , i.e. a categorified topological field theory, then the data described
above correspond to a natural transformation

Vect Vect

F(Snin) F(Snout)

id

F⊗nin F⊗nout

F(Σ)

F (Σ)
.

The compatibility with gluing and the monoidal structure is equivalent to the fact that
these natural transformations are part of an op-lax symmetric monoidal natural 2-transformation
F : 1 −→ F where 1 : Bord2 −→ Rexf is the constant symmetric monoidal 2-functor at
Vect. We refer to [Mül20, Proposition 2.74] for a complete definition in detail.

Similarly, we can define open correlators and ansular correlators as symmetric monoidal
op-lax natural 2-transformations from the constant open categorified topological quantum
field theory or ansular functor at Vect, respectively.

There is another useful perspective on consistent system correlators in terms of the
Baez-Doland Microcosm Principle [BD98, Woi24]. Roughly speaking, it states that an
algebraic structure (the micorocosm) can be defined in a categorification of that structure
(the macrocosm). For example, we can define algebras in every monoidal category. From
this perspective the open categoriefied topological field theory, ansular or modular functor
are the macrocosm and the consistent systems of correllators are the microcosm.

Slogan 7.1. Consistent correlators are topological field theories with values in a categori-
fied topological field theory described by an open(-closed), ansular or modular functor:

macrocosm ←→ chiral conformal theory of a certain flavor
(open, closed, genus zero, open-closed, ansular, . . . ),

microcosm ←→ full conformal field theory of the same flavor.


This approach to correlators has been implemented in the setting of cyclic and modular

operads in a recent paper [Woi24]. At the time of writing, the precise connection to the
description in terms of relative field theories is missing from the literature. We expect the
comparison to be reasonably straightforward and encourage interested readers to work
them out.

The strategy of reducing classification problems to cyclic algebras can also be applied
to consistent systems of correlators [Woi24] leading to the following Theorems:

Theorem 7.2 ([Woi24]). Let C be a pivotal Grothendieck-Verdier category. Then open
correlators for the corresponding categorified open topological field theory are classified
by symmetric Frobenius algebras in C.

Theorem 7.3 ([Woi24]). Let C be a ribbon Grothendieck-Verdier category. Then ansular
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correlators for the corresponding ansular functor are classified by commutative Frobenius
algebras in C.

All these theorems rely on the generalization of symmetric Frobenius algebras to
Grothendieck-Verdier categories using the notation ⊗ and ⊙ introduced in Remark 3.13
for the two different tensor products on a Grothendieck-Verdier category:

Definition 7.4. A symmetric Frobenius algebra in a pivotal Grothendieck-Verdier cate-
gory A in Lexf is an object F ∈ A together with

(M) a multiplication µ : F ⊙ F −→ F that is associative with respect to the associators
of (A,⊙),

(U) a unit η : K −→ F for µ with respect to the unitors of (A,⊙) (the domain of the
unit is the dualizing object which is the monoidal unit of ⊙),

(P) a non-degenerate symmetric pairing β : F ⊙ F −→ I in the following sense: There
is a morphism δ : K −→ F ⊗ F such that δ is a fixed point of the Z2-action on
A(K,F ⊗ F ) via the pivotal structure and such that

A(K,F ⊗ F )⊗A(F ⊙ F, I) ∼= A(DF,F )⊗A(F,DF ) ◦X−−−→ A(DF,DF )

sends δ ⊗ β to idDX while

A(F ⊙ F, I)⊗A(K,F ⊗ F ) ∼= A(F,DF )⊗A(DF,F ) ◦DF−−−−→ A(F, F )

sends β ⊗ δ to idX .

(I) subject to the invariance condition on β that β(η, µ) = β as maps F ⊙ F −→ I.

Describing consistent systems of correlation functions for modular functors, is more
involved partially due to the presents of anomalies. They only exist if the anomaly is
trivialized and are expected to be classified by a commutative Frobenius algebra satisfying
a genus 1-condition that is often hard to solve explicitly. In the rigid case, the genus 1
condition first appeared in [FS17] under the name of a modular commutative Frobenius
algebra. Recently, significant progress has been made towards solutions of this problem:
In [Woi25] the following result was shown using operadic techniques:

Theorem 7.5 ([Woi25]). Let A be a modular category. Then any special symmetric
Frobenius algebra F ∈ A gives rise to a consistent system of open-closed correlators for
the modular functor FA⊠A. If one considers open-closed correlators instead which satisfy a
natural additional condition this is indeed a classification of all such correlators, see [Woi25]
for details.

In [HR25] it was shown that one can construct consistent systems of correlators from
surfaces defects in non-semisimple topological field theories

Classifications in the Grothendieck-Verdier case are mostly open.
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Question 7.6. How to construct and classify consistent systems of correlators for modular
functors corresponding to Grothendieck-Verdier categories?

8 Outlook

Throughout these notes we have been mostly working in the setting of finite categories.
The reason for this is that many algebraic tools and results based on the coend calculus
and Nakayama functors are available in this setting. The operadic aspects of the story do
not rely on these finiteness conditions. A natural setting to apply them to are presentable
categories, which should lead to a description of larger classes of conformal field theories,
for example those with infinitely many simple objects. However, eventually one would
like to apply them to settings with a continues amount of simple objects, which will
additionally require some inputs from higher categorical functional analysis, a field which
is just in its infancy.

Another aspect we have not touched upon is that, especially in the context of non-
semisimple representation categories derived structures are supposed to play an important
role. Essentially, all structures discussed in this note should be shadows of derived general-
izations with values in dg-categories. There are partial results in this direction available in
the literature [LMSS18, LMSS20, SW21b, SW21a, MW23a], but the full picture is lacking.
The recent results of [Ste25] develop many of the necessary infinity categorical foundations
of modular operads required to construct and classify derived modular functors. There
has also been recent progress towards constructing dg-versions of 3-dimensional topological
field theories [CN25].

Let us mention some recent developments and results that we have not touched upon
in these notes.

• In [DS25] a graphical calculus for Grothendieck-Verdier categories and Frobenius
algebras in them is developed.

• Many structures in this article are closely related to non-semisimple topological
quantum field theory a subject we have only touched upon briefly.

• The study of module categories over Gorthendieck-Verdier categories and additional
structures on them [FSSW25].

• Local modules over commutative algebras in ribbon Grothendieck-Verdier cate-
gories [CMSY24].

• ...

References

[All23] Robert Allen. Hopf algebroids and grothendieck-verdier duality. arXiv preprint
arXiv:2308.01029, 2023.

[ALSW21] R. Allen, S. Lentner, C. Schweigert, and S. Wood. Duality structures for module
categories of vertex operator algebras and the Feigin Fuchs boson. arXiv:2107.05718
[math.QA], 2021.

36



[And06] J. E. Andersen. Asymptotic faithfulness of the quantum SU(n) representations of the
mapping class groups. Ann. Math., 163(1):347–368, 2006.

[Bar79] M. Barr. ⋆-autonomous categories, volume 572 of Lecture Notes in Math. Springer,
1979.

[BD98] John C Baez and James Dolan. Higher-dimensional algebra iii. n-categories and the
algebra of opetopes. Advances in Mathematics, 135(2):145–206, 1998.

[BD13] M. Boyarchenko and V. Drinfeld. A duality formalism in the spirit of Grothendieck
and Verdier. Quantum Top., 4(4):447–489, 2013.

[BDSPV15] B. Bartlett, C. L. Douglas, C. Schommer-Pries, and J. Vicary. Modular categories as
representations of the 3-dimensional bordism category. arXiv:1509.06811 [math.AT],
2015.

[BJS21] A. Brochier, D. Jordan, and N. Snyder. On dualizability of braided tensor categories.
Compositio Math., 157(3):435–483, 2021.

[BW22] A. Brochier and L. Woike. A classification of modular functors via factorization
homology. arXiv:2212.11259 [math.QA], 2022.

[CGPM23] Francesco Costantino, Nathan Geer, and Bertrand Patureau-Mirand. Admissible
skein modules. arXiv preprint arXiv:2302.04493, 2023.

[CMSY24] Thomas Creutzig, Robert McRae, Kenichi Shimizu, and Harshit Yadav. Commutative
algebras in grothendieck-verdier categories, rigidity, and vertex operator algebras.
arXiv preprint arXiv:2409.14618, 2024.

[CN25] Agustina Czenky and Cris Negron. Cochain valued tqfts from nonsemisimple modular
tensor categories. arXiv preprint arXiv:2507.17169, 2025.

[Cos07] K. Costello. Topological conformal field theories and Calabi-Yau categories. Adv.
Math., 210:165–214, 2007.

[DGT23] Chiara Damiolini, Angela Gibney, and Nicola Tarasca. On factorization and vector
bundles of conformal blocks from vertex algebras.(Sur la factorisation et les fibrés
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