

Essential Toolkit for VOAs and W-algebras

January 5-9, 2026

Justine Fasquel

Université Bourgogne Europe

History & some motivations

- 1986: Borcherds introduced vertex algebras to study infinite dimensional Lie algebras.
- 1988: Frenkel, Lepowsky, Meurman reformulated the definition (VOA) + constructed the moonshine module.
- 1992: Borcherds proved the moonshine conjectures (Field medal 1998).

Today, vertex algebras play an important role in many areas of mathematics

- connections between disparate mathematics (modular forms and sporadic groups),
- connections with many algebraic structures (Kac–Moody algebras, quantum groups, affine Yangians),
- source of examples of modular tensor categories,

and in physics in particular 2-dim CFT where VOA formalize the notion of symmetry algebra extending the conformal symmetry (Virasoro algebra), but also in higher dimension (4d/2d duality).

Examples: Virasoro minimal models and WZW models (affine vertex algebras), more recently, W-algebras.

Outline

1– Vertex operator algebras

2– Zhu's correspondence and rationality

3– Lisse VOAs and modular tensor categories

4– W-algebras and BRST cohomology

5– Quasi-lisse VOAs

Warning: all vector spaces are over \mathbb{C} .

1– Vertex operator algebras

Definition [Borcherds'86, I. Frenkel-Lepowsky-Meurman'88]

Let \mathcal{V} be a vector space over \mathbb{C} . We say that \mathcal{V} is a **vertex operator algebra (VOA)** if it is equipped with:

- **vertex operator** : a linear map (state-field correspondence)

$$Y(\cdot, z) : \mathcal{V} \rightarrow \text{End } \mathcal{V}[[z, z^{-1}]]$$

$$a \mapsto Y(a, z) := \sum_{n \in \mathbb{Z}} a_{(n)} z^{-n-1} = a(z),$$

where $a(z)$ is a *field* (ie. $\forall b \in \mathcal{V}$, $a_{(n)}b = 0$, $n \gg 0$),

- **vacuum vector** : $|0\rangle \in \mathcal{V}$ such that $Y(|0\rangle, z) = \text{Id}_{\mathcal{V}}$ and for all $a \in \mathcal{V}$,

$$a_{(-1)}|0\rangle = a, \quad \text{and} \quad a_{(n)}|0\rangle = 0 \text{ for } n \geq 0,$$

- **conformal vector** : $\omega \in \mathcal{V}$, $Y(\omega, z) = \sum_{n \in \mathbb{Z}} L_n z^{-n-2} = L(z)$ such that

$$[L_m, L_n] = (m - n)L_{m+n} + \frac{m^3 - m}{12} \delta_{m+n, 0} c,$$

where $c \in \mathbb{C}$ is the *central charge*, and

- * $(L_{-1}a)(z) = \partial_z a(z)$ for all $a \in \mathcal{V}$,

- * L_0 acts semisimply on $\mathcal{V} = \bigoplus_{\Delta \in \mathbb{Z}_{\geq 0}} \mathcal{V}_{\Delta}$, with $\dim \mathcal{V}_{\Delta} < \infty$,
(Δ is the *conformal weight* of $a \in \mathcal{V}_{\Delta}$),

and satisfying the **locality axiom**: for all $a, b \in \mathcal{V}$, there exists $N \in \mathbb{Z}_{\geq 0}$, such that

$$(z - w)^N [a(z), b(w)] = 0.$$

Heisenberg vertex algebra

Let $H = \mathbb{C}[t, t^{-1}] \oplus \mathbb{C}\mathbf{1}$ be the *Heisenberg Lie algebra* with relations

$$[b_m, b_n] = m\delta_{m+n,0}\mathbf{1}, \quad \text{and} \quad [b_n, \mathbf{1}] = 0,$$

for all $m, n \in \mathbb{Z}$ and $b_m = t^m$.

Consider the *Fock representation* of H

$$\mathcal{H} = U(H) \otimes_{U(\mathbb{C}[t] \oplus \mathbb{C}\mathbf{1})} \mathbb{C} \stackrel{v.s.}{\simeq} \mathbb{C}[b_{-1}, b_{-2}, \dots]$$

where \mathbb{C} is a 1-dim. representation of $\mathbb{C}[t] \oplus \mathbb{C}\mathbf{1}$ on which t^n acts trivially and $\mathbf{1}$ acts as $\text{Id}_{\mathbb{C}}$. \mathcal{H} is a VOA called the **Heisenberg VOA** (or *free boson*).

- $|0\rangle = \mathbf{1}$ and $\omega_\alpha = \frac{1}{2}(b_{-1})^2 - \alpha b_{-2}$ has central charge $c_\alpha = 1 - 12\alpha^2$ ($\alpha \in \mathbb{C}$).

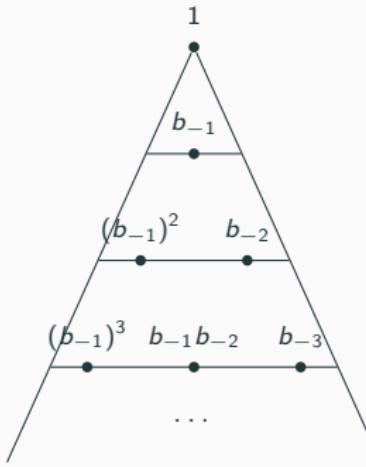
- State-field correspondence:

$$|0\rangle \mapsto \text{Id}_{\mathcal{H}},$$

$$b_{-1} \mapsto b(z) = \sum_{n \in \mathbb{Z}} b_n z^{-n-1},$$

$$b_{-2} \mapsto \partial_z b(z) = \sum_{n \in \mathbb{Z}} (-n-1) b_n z^{-n-2},$$

$$\rightsquigarrow b_{-n-1} \mapsto \frac{1}{n!} \partial_z^n b(z),$$



Normally ordered product

First idea: $(b_{-1})^2 \mapsto b(z)^2 = \sum_{n \in \mathbb{Z}} (\sum_{k+l=n} b_k b_l) z^{-n-2}$.

Problem: $(\sum_{k+l=0} b_k b_l) \mathbf{1} = (\sum_{k>0} b_k b_{-k}) \mathbf{1}$ doesn't converge.

$$\rightsquigarrow (b_{-1})^2 \mapsto \cancel{b(z)^2} :b(z)^2:$$

Definition

For $a, b \in \mathcal{V}$, the **normally ordered product (NO)** is

$$:a(z)b(w): = a(z)_+ b(w) + b(w)a(z)_-$$

where $a(z)_+ = \sum_{n<0} a_{(n)} z^{-n-1}$ and $a(z)_- = \sum_{n \geq 0} a_{(n)} z^{-n-1}$.

 It is not commutative nor associative in general ($:abc: = :a(:bc:):$).

For a general state: $b_{-j_1-1} \dots b_{-j_r-1} \mapsto \frac{1}{j_1! \dots j_r!} : \partial_z^{j_1} b(z) \dots \partial_z^{j_r} b(z) :$

- Locality axiom:

$$[b(z), b(w)] = \sum_{n \in \mathbb{Z}} n z^{-n-1} w^{m+1} = \partial_w \delta(z - w)$$

where $\delta(z - w) = \sum_{n \in \mathbb{Z}} w^n z^{-n-1}$. Hence $(z - w)^2 [b(z), b(w)] = 0$.

Virasoro vertex algebra

Let $\text{Vir} = \mathbb{C}((t))\partial_t \oplus \mathbb{C}C$ be the Virasoro Lie algebra with relations

$$[L_m, L_n] = (m - n)L_{m+n} + \frac{m^3 - m}{12}\delta_{m+n,0}C, \quad \text{and} \quad [L_n, C] = 0,$$

for all $m, n \in \mathbb{Z}$ and $L_m = -t^{m+1}\partial_t$. The Vir-module

$$\text{Vir}^c = U(\text{Vir}) \otimes_{U(\mathbb{C}[[t]]\partial_t \oplus \mathbb{C}C)} \mathbb{C}_c \xrightarrow{v.s.} \mathbb{C}[L_{-2}, L_{-3}, \dots]$$

admits a structure of VOA called the **(universal) Virasoro VOA** with central charge c . We have $|0\rangle = 1$ and $\omega = L_{-2} \mapsto L(z) = \sum_{n \in \mathbb{Z}} L_n z^{-n-2}$.

Sometimes Vir^c is not simple as Vir-module, then we set N_c its maximal proper graded submodule. The quotient $\text{Vir}_c = \text{Vir}^c/N_c$ is still a VOA (inherits the VOA structure from Vir^c).

Operator Product Expansions

Proposition

Let $a, b \in \mathcal{V}$ and $N \in \mathbb{Z}_{\geq 0}$, the following assertions are equivalent:

- (i) $(z - w)^N [a(z), b(w)] = 0$,
- (ii) $[a(z), b(w)] = \sum_{n=0}^{N-1} \frac{(a_{(n)} b)(w)}{n!} \partial_w^n \delta(z - w)$,

When the conditions are satisfied, we denote the **Operator Product Expansion (OPE)** of $a, b \in \mathcal{V}$ by

$$a(z)b(w) \sim \sum_{n=0}^{N-1} \frac{(a_{(n)} b)(w)}{n!} \frac{1}{(z - w)^{n+1}}.$$

~~~ **Borcherds' identities:** for all  $a, b \in \mathcal{V}$ ,  $m, n \in \mathbb{Z}$ ,

- 1)  $[a_{(m)}, b_{(n)}] = \sum_{i \geq 0} \binom{m}{i} (a_{(i)} b)_{(m+n-i)}$ ,
- 2)  $(a_{(m)} b)_{(n)} = \sum_{j \geq 0} (-1)^j \binom{m}{j} \left( a_{(m-j)} b_{n+j} - (-1)^m b_{(m+n-j)} a_{(j)} \right)$ .

Examples:

- $\mathcal{H}$  is strongly generated by  $b$  satisfying  $b(z)b(w) \sim \frac{1}{(z-w)^2}$ ,
- $\text{Vir}^c$  is strongly generated by  $L$  such that

$$L(z)L(w) \sim \frac{c}{2(z-w)^4} + \frac{2L(w)}{(z-w)^2} + \frac{\partial_w L(w)}{(z-w)}.$$

## Affine vertex algebras

Let  $\mathfrak{g}$  be a finite dim. simple Lie algebra with  $(\cdot, \cdot) = \frac{1}{2h^\vee} \kappa(\cdot, \cdot)$ .

The *affine Kac-Moody algebra* is the central extension  $\widehat{\mathfrak{g}} = \mathfrak{g}[t, t^{-1}] \oplus \mathbb{C}K$ .

For  $k \in \mathbb{C} \setminus \{-h^\vee\}$ , the **(universal) affine VOA** is the  $\widehat{\mathfrak{g}}$ -module

$$\mathcal{V}^k(\mathfrak{g}) = U(\widehat{\mathfrak{g}}) \otimes_{U(\mathfrak{g}[t] \oplus \mathbb{C}K)} \mathbb{C}_k \xrightarrow{\text{v.s.}} U(t^{-1}\mathfrak{g}[t^{-1}]),$$

where  $\mathbb{C}_k$  is a 1-dim. rep. of  $\mathfrak{g}[t] \oplus \mathbb{C}K$  on which  $\mathfrak{g}[t]$  acts trivially and  $K$  acts as  $k \text{Id}$ .

It is a VOA strongly generated by  $x^i(z) = \sum_{n \in \mathbb{Z}} x_{(n)}^i z^{-n-1}$  where  $\{x^i\}_i$  basis of  $\mathfrak{g}$  (and  $x_{(n)}^i = x^i t^n$ ), satisfying the OPEs

$$x(z)y(w) \sim \frac{(x, y)k}{(z-w)^2} + \frac{[x, y](w)}{(z-w)}, \quad x, y \in \mathfrak{g}.$$

A conformal vector is given by the Segal-Sugawara vector

$$L(z) = \frac{1}{2(k+h^\vee)} \sum_i :x^i(z)x^{i*}(z):, \quad \text{with central charge } c_k = \frac{k \dim \mathfrak{g}}{k+h^\vee}.$$

Here  $\{x^{i*}\}_i$  is the dual basis of  $\{x^i\}_i$ .

Denote by  $L_k(\mathfrak{g}) = \mathcal{V}^k(\mathfrak{g})/N_k$  the simple affine VOA.

## **2– Zhu's correspondence and rationality**

---

Let  $\mathcal{V}$  be a VOA. A  $\mathcal{V}$ -module is a vector space  $M$  equipped with a linear map

$$\begin{aligned}Y_M(\cdot, z) : \mathcal{V} &\rightarrow \text{End } M[[z, z^{-1}]] \\a &\mapsto \sum_{n \in \mathbb{Z}} a_{(n)}^M z^{-n-1} = a^M(z),\end{aligned}$$

compatible with the VOA structure, eg.

- for all  $a \in \mathcal{V}$ ,  $a^M(z)$  is a field over  $M$  (ie. for all  $m \in M$ ,  $a_{(n)}^M m = 0$  for  $n \gg 0$ ),
- $Y_M(|0\rangle, z) = \text{Id}_M$ ,
- $Y_M(a_{(n)} b, z) = Y_M(a, z)_{(n)} Y_M(b, z)$ , etc.

Remarks:

- $\mathcal{V}$  is always a  $\mathcal{V}$ -module.
- We also have the natural notion of submodules, quotients, ideals of  $\mathcal{V}$ , etc.

## Examples of modules

1) Irreducible representations of  $\mathcal{H}$  are Fock modules: for  $\lambda \in \mathbb{C}$ ,  $\pi_\lambda$  is the  $\mathcal{H}$ -module generated by  $|\lambda\rangle$  on which,  $b_{-n}$  acts freely for  $n > 0$  and

$$b_n|\lambda\rangle = \begin{cases} 0 & \text{if } n > 0, \\ \lambda|\lambda\rangle & \text{for } n = 0. \end{cases}$$

2) A  $\widehat{\mathfrak{g}}$ -module  $M$  is *smooth* if for all  $m \in M$ ,  $x \in \mathfrak{g}$ ,  $x_{(n)}m = 0$  for  $n \gg 0$ . There is an equivalence of category between the category of  $\mathcal{V}^k(\mathfrak{g})$ -modules and the category of smooth  $\widehat{\mathfrak{g}}$ -modules at level  $k$ .

Let  $\mathcal{V}$  be a VOA. Assume  $L_0$  acts semisimply on a  $\mathcal{V}$ -module  $M$ :

$$M = \bigoplus_{\Delta \in \mathbb{C}} M_\Delta, \quad M_\Delta = \{m \in M \mid L_0^M m = \Delta m\}.$$

Then,

- $M$  is a **positive energy representation** if  $M = \bigoplus_{\Delta \in \Delta_0 + \mathbb{Z}_{\geq 0}} M_\Delta$  with  $M_{\text{top}} := M_{\Delta_0} \neq 0$ .
- $M$  is an **ordinary representation** if  $\dim M_\Delta < \infty$  for all  $\Delta \in \mathbb{C}$  and  $M_{\Delta-n} = 0$  for  $n \gg 0$ .

Let  $\mathcal{V}$  be a VOA. For  $a, b \in \mathcal{V}$  homogeneous, set

$$a \circ b = \text{Res}_z \left( a(z)b \frac{(z+1)^{\Delta_a}}{z^2} \right) = \sum_{i \geq 0} \binom{\Delta_a}{i} a_{(i-2)} b.$$

The quotient  $\text{Zhu}(\mathcal{V}) = \mathcal{V}/\mathcal{V} \circ \mathcal{V}$  is a unital associative algebra called the **Zhu algebra** of  $\mathcal{V}$ . The unit is given by the image of  $|0\rangle$  and the multiplication is defined by

$$a * b = \text{Res}_z \left( a(z)b \frac{(z+1)^{\Delta_a}}{z} \right) = \sum_{i \geq 0} \binom{\Delta_a}{i} a_{(i-1)} b.$$

Remark: The Zhu algebra is also referred to as the *algebra of degree zero modes*, as Zhu  $\mathcal{V}$  acts on the top spaces of positive energy rep. via  $\bar{a} \mapsto a_{(n_0)}$  such that  $a_{(n_0)}|0\rangle$  has conformal weight 0.

Examples:  $\text{Zhu}(\mathcal{H}) \simeq \mathbb{C}[x] \simeq \text{Zhu}(\text{Vir}^c)$ ,  $\text{Zhu}(\mathcal{V}^k(\mathfrak{g})) \simeq U(\mathfrak{g})$ .

 The Zhu algebras of  $\text{Vir}^c$  and  $\mathcal{V}^k(\mathfrak{g})$  don't depend on  $c/k$  contrary to those of their simple quotients that are quotients of  $\mathbb{C}[x]$  and  $U(\mathfrak{g})$  respectively.

### Theorem [Zhu'96]

There is a one-to-one correspondence between irreducible positive energy representations of  $\mathcal{V}$  and the simple Zhu( $\mathcal{V}$ )-modules given by  $M \mapsto M_{\text{top}}$ .

# Rationality

A VOA  $\mathcal{V}$  is **rational** if  $\text{Rep}(\mathcal{V})$  is semisimple.

[Dong-Li-Mason'98]: If  $\mathcal{V}$  is rational, then  $\mathcal{V}$  has finitely many irreducible positive energy representations (up to isomorphism) and their graded components are finite-dim.  
( $\Rightarrow$  ordinary modules).

Examples:

- 1) All weight  $\mathcal{H}$ -modules are completely reducible but existence of modules with non-trivial Jordan block for  $L_0$ :  $\mathcal{H}$ -module generated by two vectors  $v_0, v_1$  with

$$b_0 v_0 = 0, \quad b_0 v_1 = v_0, \quad b_n v_j = 0$$

and  $b_{-n}$  acts freely for  $n > 0$ .  $\rightsquigarrow \mathcal{H}$  not rational.

- 2) [Frenkel-Zhu'92]:  $L_k(\mathfrak{g})$  is rational  $\Leftrightarrow L_k(\mathfrak{g})$  is an *integrable*  $\widehat{\mathfrak{g}}$ -module ( $\Leftrightarrow k \in \mathbb{Z}_{\geq 0}$ ).  
Indeed for  $k \in \mathbb{Z}_{\geq 0}$ ,

$$L_k(\mathfrak{g}) = \mathcal{V}^k(\mathfrak{g}) / \langle e_{\theta, (-1)}^{k+1} \rangle \quad \text{and} \quad \text{Zhu}(L_k(\mathfrak{g})) \simeq U(\mathfrak{g}) / \langle e_{\theta}^{k+1} \rangle.$$

Irreducible highest-weight  $L_k(\mathfrak{g})$ -modules are given by  $\{L(\lambda), \lambda \in P_+^k\}$ .

$\rightsquigarrow$  the corresponding CFT is the **Wess-Zumino-Witten models**.

- 3) [Wang'93]:  $\text{Vir}_c$  rational  $\Leftrightarrow c = 1 - \frac{6(p-q)^2}{pq}$  for  $p, q \in \mathbb{Z}_{\geq 2}$ ,  $(p, q) = 1$ .  
 $\rightsquigarrow$  corresponding to **minimal models** of the Virasoro Lie algebra.
- 4) *exceptional W-algebras*  $\mathcal{W}_k(\mathfrak{g}, f)$ .

## 3– Lisse VOAs and modular tensor categories

---

## Li filtration and Zhu $C_2$ -algebra

Any VOA  $\mathcal{V}$  is canonically filtered. For  $p \geq 0$ , let  $F^p \mathcal{V}$  the subset of  $\mathcal{V}$  spanned by

$$a_{(-n_1-1)}^1 a_{(-n_2-1)}^2 \cdots a_{(-n_r-1)}^r |0\rangle,$$

with  $a^1, \dots, a^r \in \mathcal{V}$  strong generators,  $n_i \geq 0$ ,  $\sum_i n_i \geq p$ . Then,

$$\mathcal{V} = F^0 \mathcal{V} \supset F^1 \mathcal{V} \supset \dots$$

is a decreasing filtration called the **Li filtration**. It is separated ( $\cap_{p \geq 0} F^p \mathcal{V} = 0$ ) and the associated graded space

$$\text{gr}^F \mathcal{V} = \bigoplus_{p \geq 0} F^p \mathcal{V} / F^{p+1} \mathcal{V}$$

is a *Poisson vertex algebra* with product  $\bar{a} \cdot \bar{b} = \overline{a_{(-1)} b}$  and derivation  $\partial \bar{a} = \overline{L_{-1} a}$ .

Let  $C_2(\mathcal{V}) := F^1 \mathcal{V} = \text{Span}_{\mathbb{C}}\{a_{(-2)} b \mid a, b \in \mathcal{V}\}$ . The quotient  $R_{\mathcal{V}} = \mathcal{V} / C_2(\mathcal{V})$  is a Poisson algebra called the **Zhu  $C_2$ -algebra** of  $\mathcal{V}$  with bracket:  $\{\bar{a}, \bar{b}\} = \overline{a_{(0)} b}$ .

Remarks:

- $R_{\mathcal{V}}$  generates  $\text{gr}^F \mathcal{V}$  as differential algebra.
- $\mathcal{V}$  is finitely strongly generated  $\Leftrightarrow R_{\mathcal{V}}$  is finitely generated as a ring.

## Associated variety and $C_2$ -cofiniteness

The **associated variety** of a VOA  $\mathcal{V}$  is the reduced scheme  $X_{\mathcal{V}} = (\text{Spec } R_{\mathcal{V}})_{\text{red}}$ .

Examples:

1)  $C_2(\mathcal{H}) \simeq \mathbb{C}[b_{-n}, n \geq 2]$ . Hence  $R_{\mathcal{H}} \simeq \mathbb{C}[x]$  and  $X_{\mathcal{H}} \simeq \mathbb{C}$ .

Same for  $\text{Vir}^c$ .

2)  $C_2(\mathcal{V}^k(\mathfrak{g})) = t^{-2}\mathfrak{g}[t^{-1}]\mathcal{V}^k(\mathfrak{g})$ . Hence

$$R_{\mathcal{V}^k(\mathfrak{g})} = \mathcal{V}^k(\mathfrak{g})/t^{-2}\mathfrak{g}[t^{-1}]\mathcal{V}^k(\mathfrak{g}) \xleftarrow{\sim} S[\mathfrak{g}] \simeq \mathbb{C}[\mathfrak{g}^*]$$
$$\overline{x_{(-1)}^1 \dots x_{(-1)}^r |0\rangle} \longleftrightarrow x^1 \dots x^r.$$

Thus  $X_{\mathcal{V}^k(\mathfrak{g})} \simeq \mathfrak{g}^*$ .

If  $\mathcal{V} = \mathcal{V}^k(\mathfrak{g})/N$ ,  $R_{\mathcal{V}^k(\mathfrak{g})} \twoheadrightarrow R_{\mathcal{V}}$  and  $R_{\mathcal{V}} \simeq R_{\mathcal{V}^k(\mathfrak{g})}/I_N \rightsquigarrow X_{\mathcal{V}}$  is the zero locus of  $I_N$  in  $\mathfrak{g}^*$ . In particular,  $X_{\mathcal{V}}$  is a conical,  $G$ -invariant, closed subvariety of  $\mathfrak{g}^*$ .

A VOA  $\mathcal{V}$  is  **$C_2$ -cofinite** (or *lisse*) if  $R_{\mathcal{V}}$  is finite dimensional ( $\Leftrightarrow \dim X_{\mathcal{V}} = 0$ ).

Examples:

1) [Dong-Mason'06]:  $L_k(\mathfrak{g})$  is  $C_2$ -cofinite  $\Leftrightarrow L_k(\mathfrak{g})$  is rational.

2) [Arakawa'15]:  $\text{Vir}_c$  is  $C_2$ -cofinite  $\Leftrightarrow \text{Vir}_c$  is rational.

3) exceptional W-algebras.

There are examples of  $C_2$ -cofinite non-rational VOA (eg. triplet VOA [Adamovic-Milas'07]).

## Modular tensor category

If  $\mathcal{V}$  is  $C_2$ -cofinite, then all simple  $\mathcal{V}$ -modules are ordinary modules and there are finitely many of them. Let  $M_1, \dots, M_s$  be the irreducible  $\mathcal{V}$ -modules and set

$$\text{ch}_{M_i}(q) := \text{tr}_{M_i} q^{L_0 - c/24} = \sum_{n \geq 0} \dim(M_i)_n q^{n - c/24}, \quad q = e^{2i\pi\tau}.$$

Then,  $\text{Span}_{\mathbb{C}}\{\text{ch}_{M_i}(q)\}$  generates a finite dimensional representation of  $\text{SL}_2(\mathbb{Z})$ .

In addition, if  $\mathcal{V}$  is rational,  $\text{Span}_{\mathbb{C}}\{\text{ch}_{M_i}(q)\}$  is invariant under the  $\text{SL}_2(\mathbb{Z})$ -action.

### Theorem [Huang'08]

If  $\mathcal{V}$  is a rational,  $C_2$ -cofinite VOA, then  $\text{Rep}(\mathcal{V})$  is a modular tensor category ( $\Rightarrow$  finite, semisimple, rigid, monoidal tensor category), and the categorical action of  $\text{SL}_2(\mathbb{Z})$  via Hopf links and twists matches the modular transformations of characters ( $\Rightarrow$  Verlinde's formula describes the decomposition of the tensor product).

Examples of fusion rules:

|                        |     |  |
|------------------------|-----|--|
| $L_0(\mathfrak{sl}_2)$ | $0$ |  |
| $0$                    | $0$ |  |
|                        |     |  |

|                        |            |            |
|------------------------|------------|------------|
| $L_1(\mathfrak{sl}_2)$ | $0$        | $\varpi_1$ |
| $0$                    | $0$        | $\varpi_1$ |
| $\varpi_1$             | $\varpi_1$ | $0$        |

|                        |             |                      |             |
|------------------------|-------------|----------------------|-------------|
| $L_2(\mathfrak{sl}_2)$ | $0$         | $\varpi_1$           | $2\varpi_1$ |
| $0$                    | $0$         | $\varpi_1$           | $2\varpi_1$ |
| $\varpi_1$             | $\varpi_1$  | $0 \oplus 2\varpi_1$ | $\varpi_1$  |
| $2\varpi_1$            | $2\varpi_2$ | $\varpi_1$           | $0$         |

## 4– W-algebras and BRST cohomology

---

## Bosonic VS fermionic ghosts

The **bosonic ghosts** (or  $\beta\gamma$ -system) is the VOA strongly generated by the fields  $\beta, \gamma$  with only non-trivial OPE

$$\beta(z)\gamma(w) \sim \frac{1}{(z-w)}.$$

It has a one-parameter family of conformal vectors:

$$L_\mu(z) = \mu : \beta(z) \partial_z \gamma(z) : + (\mu - 1) : \partial_z \beta(z) \gamma(z) :$$

with central charge  $c_\mu = 1 - 6\mu + 6\mu^2$ .

The **fermionic ghosts** (or  $bc$ -system) is the VOA strongly generated by the *odd* fields  $b, c$  ( $\Rightarrow b_{(n)}^2 = c_{(n)}^2 = 0$ ) with only non-trivial OPE

$$b(z)c(w) \sim \frac{1}{(z-w)}.$$

Bosonic and fermionic ghosts are examples of *free field VOAs*.

Let  $f \in \mathfrak{g}$  a nilpotent element that we embed in an  $\mathfrak{sl}_2$ -triple  $(e, h, f)$ . Set  $x = \frac{h}{2}$ , then

$$\mathfrak{g} = \bigoplus_{j \in \frac{1}{2}\mathbb{Z}} \mathfrak{g}_j, \quad \mathfrak{g}_j = \{a \in \mathfrak{g}, [x, a] = ja\}.$$

Define the vertex algebra  $\mathcal{C}(\mathfrak{g}, f, k) := \mathcal{V}^k(\mathfrak{g}) \otimes (bc)^{\otimes \dim \mathfrak{g}_{>0}} \otimes (\beta\gamma)^{\otimes \dim \mathfrak{g}_{1/2}}$ , with differential

$$d(z) = \sum_{\alpha \in S_+} : (e_\alpha(z) + (f, e_\alpha) |0\rangle(z)) c_\alpha(z) : + \dots$$

where  $S_+$  is a basis of  $\mathfrak{g}_{>0}$ . Then  $(\mathcal{C}(\mathfrak{g}, f, k), d_{(0)})$  is a  $\mathbb{Z}$ -graded cohomology complex whose zero-th cohomology is the **(affine) W-algebra** associated with  $(\mathfrak{g}, f)$  at level  $k$

$$\mathcal{W}^k(\mathfrak{g}, f) := H_f^0(\mathcal{V}^k(\mathfrak{g})).$$

Examples:

$$\mathcal{W}^k(\mathfrak{g}, 0) = \mathcal{V}^k(\mathfrak{g}), \quad \mathcal{W}^k(\mathfrak{sl}_2, f_{\neq 0}) \simeq \text{Vir}^{c_k}, \quad \mathcal{W}^k(\mathfrak{sl}_n, f_{\text{reg}}) \simeq \mathcal{W}_n, \quad \mathcal{W}^k(\mathfrak{sl}_3, f_{2,1}) \simeq BP^k.$$

Remarks:

- $\mathcal{W}^k(\mathfrak{g}, f)$  depends on the nilpotent orbit  $\mathbb{O}_f = G.f$  rather than  $f$ .
- When  $\mathcal{W}^k(\mathfrak{g}, f)$  is not simple, we denote by  $\mathcal{W}_k(\mathfrak{g}, f)$  its simple quotient.  
Conjecture:  $\mathcal{W}_k(\mathfrak{g}, f) \simeq H_f^0(L_k(\mathfrak{g}))$  when the second does not vanish.

# Zhu's algebra and associated variety

W-algebras can be viewed as:

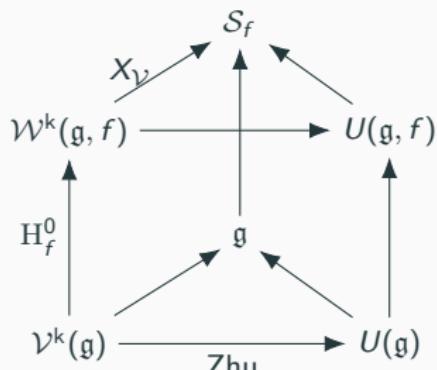
- a generalization of affine vertex algebras, *but* contrary to our previous examples ( $\mathcal{V}^k(\mathfrak{g})$ ,  $\text{Vir}^c$ ), there are *not* Lie algebras.

$\mathcal{W}^k(\mathfrak{g}, f)$  is strongly generated by a basis of  $\mathfrak{g}^f$  compatible with the  $x$ -eigenspaces decomposition. However, the OPEs are largely unknown.

Example:  $W_3$ -algebra [Zamolodchikov'85] generated by  $L(z) = \sum_{n \in \mathbb{Z}} L_n z^{-n-2}$  and  $W(z) = \sum_{n \in \mathbb{Z}} W_n z^{-n-4}$  with

$$\begin{aligned} W(z)W(w) &\sim \frac{w_k c_k}{3(z-w)^6} + \frac{2w_k}{(z-w)^4} L(w) + \frac{w_k}{2(z-w)^3} \partial L(w) + \dots \\ &+ \frac{1}{(z-w)} \left( \frac{2(k+3)^3}{3} :L(w)\partial L(w): - \frac{(3+k)^2(18+14k+3k^2)}{18} \partial^3 L(w) \right). \end{aligned}$$

- an affinisation of *finite* W-algebras  $U(\mathfrak{g}, f)$ , which themselves are seen as the enveloping algebras of *Slodowy slices*  $S_f = f + \mathfrak{g}^e$  [Premet'02].



# Exceptional W-algebras

A level  $k \in \mathbb{C}$  is said **admissible** if it is of the form

$$k = -h^\vee + \frac{p}{q}, \quad p, q \in \mathbb{Z}_{>0}, \quad (p, q) = 1, \quad \text{and} \quad \begin{cases} p \geq h^\vee, & \text{if } (r^\vee, q) = 1, \\ p \geq h, & \text{if } (r^\vee, q) = r^\vee. \end{cases}$$

[Arakawa'12]: When  $k$  is admissible then  $X_{L_k(\mathfrak{g})} = \overline{\mathbb{O}}_q$  where  $\mathbb{O}_q$  is a nilpotent orbit of  $\mathfrak{g}$  that only depends on  $q$ . Since  $\mathcal{W}_k(\mathfrak{g}, f)$  is a quotient of  $H_f^0(L_k(\mathfrak{g})) \neq 0$ ,

$$X_{\mathcal{W}_k(\mathfrak{g}, f)} \subset X_{H_f^0(L_k(\mathfrak{g}))} = X_{L_k(\mathfrak{g})} \cap X_{H_f^0(\mathcal{V}^k(\mathfrak{g}))} = \overline{\mathbb{O}}_q \cap \mathcal{S}_f.$$

Hence, if  $f \in \mathbb{O}_q$ ,  $X_{H_f^0(L_k(\mathfrak{g}))} = \{f\}$  and,  $H_f^0(L_k(\mathfrak{g}))$  and  $\mathcal{W}_k(\mathfrak{g}, f)$  are  $C_2$ -cofinite.

$\rightsquigarrow \mathcal{W}^k(\mathfrak{g}, f)$  is called **exceptional** if  $k$  is admissible and  $f \in \mathbb{O}_q$ .

**Theorem** [Arakawa'15, Arakawa-van Ekeren'19, McRae'21, etc.]

The simple exceptional W-algebra  $\mathcal{W}_k(\mathfrak{g}, f)$  is rational.

## Examples of fusion rules for exceptional W-algebras

- [E. Frenkel-Kac-Wakimoto'92]:  $k = -h^\vee + \frac{p}{n}$

$$\mathcal{F}(\mathcal{W}_k(\mathfrak{sl}_n, f_{\text{reg}})) \simeq \mathcal{F}(L_{p-h^\vee}(\mathfrak{sl}_n)).$$

- [Arakawa-van Ekeren'19]:  $k = -h^\vee + \frac{p}{n-1}$

$$\mathcal{F}(\mathcal{W}_k(\mathfrak{sl}_n, f_{\text{subreg}})) \simeq \mathcal{F}(L_{p-h^\vee}(\mathfrak{sl}_n)).$$

- Conjecture [F.-Nakatsuka'23]:  $k = -h^\vee + \frac{p}{q}$ ,

$$\mathcal{F}(\mathcal{W}_k(\mathfrak{so}_{2n+1}, f_{\text{subreg}})) \simeq \begin{cases} \mathcal{F}(L_{p-h^\vee}(\mathfrak{so}_{2n+1})) \otimes_{\mathbb{Z}[\mathbb{Z}_2]} \mathbb{Z}[\mathbb{Z}_{2q}], & q = 2n - 1. \\ \mathcal{F}(L_{p-h}(\mathfrak{sp}_{2n})) \otimes_{\mathbb{Z}[\mathbb{Z}_2]} \mathbb{Z}[\mathbb{Z}_q], & q = 2n. \end{cases}$$

There are many examples of rational W-algebras outside exceptional levels (eg.  $\mathcal{W}_k(\mathfrak{so}_{2n}, f_{\text{min}})$  when  $k = -1, -2$  and other *collapsing levels*).

**Open problem:** exhaustive classification of rational W-algebras.

## 5– Quasi-lisse VOAs

---

A VOA  $\mathcal{V}$  is **quasi-lisse** if  $X_{\mathcal{V}}$  has finitely many symplectic leaves.

**Theorem** [Arakawa-Kawabetsu'18]

Let  $\mathcal{V}$  be a quasi-lisse VOA, then

- (i)  $\mathcal{V}$  has finitely many ordinary representations,
- (ii) their normalised characters satisfy certain modular invariance properties (modular linear differential equation).

Examples:  $L_k(\mathfrak{g})$  is quasi-lisse  $\Leftrightarrow X_{L_k(\mathfrak{g})} \subset \mathcal{N}$ .

In particular, for  $k$  admissible,  $L_k(\mathfrak{g})$  is quasi-lisse (recall  $X_{L_k(\mathfrak{g})} = \overline{\mathbb{O}}_q$ ).

$\mathcal{W}_k(\mathfrak{g}, f)$  is quasi-lisse as well as  $X_{\mathcal{W}_k(\mathfrak{g}, f)} \subset \mathcal{S}_f \cap \overline{\mathbb{O}}_q$ .

Also examples outside admissible levels, eg.

- [Arakawa-Moreau'18]  $X_{L_k(\mathfrak{g})} = \overline{\mathbb{O}}_{\min}$  with  $\mathfrak{g}$  in the *Deligne exceptional series*

$$A_1 \subset A_2 \subset G_2 \subset D_4 \subset F_4 \subset E_6 \subset E_7 \subset E_8, \quad \text{and} \quad k = -\frac{h^\vee}{6} - 1.$$

- $X_{L_{-2}(B_3)} = \overline{\mathbb{O}}_{\text{short}}$  [A.-M.'18],  $X_{L_{-2}(G_2)} = \overline{\mathbb{O}}_{\text{subreg}}$  [A.-Dai-F.-Li-M.'24], etc.

Conjecture [Arakawa-Moreau'18]: If  $\mathcal{V}$  is a quasi-lisse VOA, then  $X_{\mathcal{V}}$  is irreducible.

# Admissible representations

An **admissible representation** of  $L_k(\mathfrak{g})$  is a highest-weight  $\widehat{\mathfrak{g}}$ -module whose highest-weight is *admissible*. Admissible representations are in the **category  $\mathcal{O}$** . In particular, they are finitely generated, semisimple, locally finite positive energy representations with finite dimensional weight-spaces.

[Kac-Wakimoto'88]: There are finitely many admissible representations and they form a “modular invariant” category (carry a representation of  $SL_2(\mathbb{Z})$ ).

BUT, at fractional levels, they do not satisfy the Verlinde formula [Koh-Sorba'88].

[Adamovic-Milas'95]: Classification of irreducible positive energy representations of  $L_k(\mathfrak{sl}_2)$  at admissible levels  $k = -2 + \frac{p}{q}$ : **admissibles**, **conjugates**, **relaxed**.



[Gaberdiel'01, Ridout'09]: Highest-weight admissible representations are not closed under fusion. Example:  $\text{Irr}_{\mathbb{Z}_{\geq 0}}(L_{-\frac{1}{2}}(\mathfrak{sl}_2)) = \left\{ \mathcal{L}_0, \mathcal{L}_1, \mathcal{D}_{\mp\frac{3}{2}}, \mathcal{D}_{\mp\frac{1}{2}}, \mathcal{E}_\lambda \right\}$

$$\mathcal{D}_{-\frac{3}{2}}^+ \boxtimes \mathcal{D}_{-\frac{3}{2}}^+ \simeq \sigma(\mathcal{D}_{-\frac{1}{2}}^+), \quad \mathcal{E}_\lambda \boxtimes \mathcal{E}_\mu \simeq \begin{cases} \sigma(\mathcal{E}_{\lambda+\mu+\frac{1}{2}}) \otimes \sigma^{-1}(\mathcal{E}_{\lambda+\mu-\frac{1}{2}}), & \text{if } \lambda + \mu \notin \mathbb{Z}, \\ \mathcal{S}_{\lambda+\mu}, & \lambda + \mu \in \mathbb{Z} \end{cases}$$

↔ enlarge the considered category to add *relaxed* and *spectrally flowed* modules.

## Relaxed modules [Feigin-Semikhatov-Tipunin'98]

The right category to consider seems to be the one  $\text{Rep}_{\text{wt}}(L_k(\mathfrak{sl}_2))$  of *weight* modules, including the relaxed ones. It is neither finite nor semisimple.

A **relaxed module** is one that is generated by a relaxed highest weight state, this is for  $L_k(\mathfrak{sl}_2)$ , an eigenstate of  $h_0$  which is annihilated by the modes  $e_n, h_n$  and  $f_n$ ,  $n > 0$ .

[Creutzig-Ridout'12-'13]: Generalised Verlinde formula and conjectural fusion rules.

[Arakawa-Creutzig-Kawasetsu'23]:  $\text{Rep}_{\text{wt}}(L_k(\mathfrak{sl}_2))$  has enough *projectives*.

[Creutzig'23]: Logarithmic tensor category structure on  $\text{Rep}_{\text{wt}}(L_k(\mathfrak{sl}_2))$ .

**Theorem** [Nakano-Orosz Hunziker-Ros Camacho-Wood'24, Creutzig-McRae-Yang'24, Creutzig'24]

$\text{Rep}_{\text{wt}}(L_k(\mathfrak{sl}_2))$  is a (non-finite, non semisimple) modular tensor category (rigidity) + Verlinde's formula.

Important ingredient: [Adamovic'19] when  $k = -2 + \frac{p}{q}$ ,  $q > 1$ ,

$$L_k(\mathfrak{sl}_2) \hookrightarrow \underbrace{\text{Vir}_{c_k}}_{\text{rational}} \otimes \beta \gamma^{\text{loc.}}$$

To go further / generalisations:

- $\mathcal{W}_k(\mathfrak{sl}_3, f_{\min})$  [Fehily-Ridout'21, Adamovic-Kawasetsu-Ridout'21-'24]
- $\mathfrak{sl}_3$  [Kawasetsu-Ridout-Wood'21, Adamovic-Creutzig-Genra'22, F.-Raymond-Ridout'24]
- singlet/triplet vertex algebras  
[Adamovic-Milas'08, Wood'10, Creutzig-Milas'13, Ridout-Wood'13, Creutzig-Milas-Wood'14]
- VOAs extensions / rigidity [Creutzig-Kanade-McRae'21, Creutzig-McRae-Shimizu-Yadav'25], etc.