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Unit disk graphs are the intersection graphs of equal sized circles in the plane: they provide a 

graph-theoretic model for broadcast networks (cellular networks) and for some problems in 

computational geometry. We show that many standard graph theoretic problems remain 

NP-complete on unit disk graphs, including coloring, independent set, domination, independ- 

ent domination, and connected domination; NP-completeness for the domination problem is 

shown to hold even for grid graphs, a subclass of unit disk graphs. In contrast, we give a 

polynomial time algorithm for finding cliques when the geometric representation (circles in the 

plane) is provided. 

1. Preliminaries 

Consider a set of n equal-sized circles in the plane. The intersection graph of 
these circles is an n-vertex graph; each vertex corresponds to a circle, and an edge 
appears between two vertices when the corresponding circles intersect (tangent 
circles are assumed to intersect). Such intersection graphs are called unit disk 

graphs, and the set of n circles is an intersection model. Intersection graphs have 
been widely studied (see, for example, [6]); for many classes, efficient algorithms 
for standard graph problems have been devised. Many of the intersection families 
previously studied form sublclasses of the class of perfect graphs, and many of the 
efficient algorithms arise because the problems are efficiently solvable for 
arbitrary perfect graphs. One of our primary motivations in studying unit disk 
graphs is that they need not be perfect; in particular, any odd cycle of length five 
or greater is a unit disk graph but is not perfect. Similarly, although unit disk 
graphs have a representation as points in the plane, they need not be planar; in 
particular, any complete graph is a unit disk graph. 

A second motivation for studying unit disk graphs is that they arise in a variety 
of settings. Another graph-theoretic definition is the following. For n equal-sized 
circles in the plane, form a graph with n vertices corresponding to the n circles, 
and an edge between two vertices if one of the corresponding circles contains the 
other’s center. This is a containment model of unit disk graphs. A purely 
geometric definition is also available. For n points in the plane, form a graph with 
n vertices corresponding to the n points, and an edge between two vertices if and 
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only if the Euclidean distance between the two corresponding points is at most 
some specified bound d. This gives a proximity model of unit disk graphs. 
Transforming between intersection and containment models is simply a matter of 
doubling or halving the diameter. Transforming between the intersection and 
proximity models involves only an identification of the circle centers with the 
points in the plane and the circle diameter with d. Hence given any of the three 
models, we can produce the other two in linear time. The complexity of 
recognizing unit disk graphs is open, however, as is the complexity of building 
one of these models, although we strongly suspect that both problems are 
NP-hard . 

Most potential applications of unit disk graphs arise in broadcast networks, 
where the model is implicit. If we imagine that each point is a 
transmitter/receiver station, one can view the effective broadcast range of the 
transmitter as a circle. Further, if each station has the same power, the circles will 
be approximately equal in size. This model of broadcast networks is somewhat 
naive, because it assumes that no interference from weather, physical obstacles, 
and so on occurs. Nevertheless, the model is employed in the solution of 
important problems on broadcast networks [7,12,20]; the advent of cellular 
telephone systems has made analysis of problems via this model valuable. Two 
examples of note are frequency assignment [7] and emergency senders [18]. In the 
frequency assignment problem, one is to assign different frequencies to transmit- 
ters whose ranges intersect. Using the intersection model of unit disk graphs, we 
see that frequency assignment (in its simplest form) is coloring. In the emergency 
senders problem, one is to find a minimum set of transmitters which can (in an 
emergency) transmit to all remaining stations. Using the containment model of 
unit disk graphs, this is domination. Finally, a clustering problem of interest is to 
find a maximum subset of points so that no two are at distance exceeding d; 

using the proximity model, this is a maximum clique in the unit disk graph. 
With these applications in mind, we study the effect of the restriction to unit 

disk graphs on the complexity of the following problems, known to be 
NP-complete for general graphs: coloring, clique, independent set (vertex cover), 
domination, independent domination, and connected domination. We also 
consider the effect of the further restriction to ‘grid graphs’, where a grid graph is 
a unit disk graph in whose intersection model all the disks have centers with 
integer coordinates and radius l/2. Table 1 summarizes what is now known about 
these restrictions, including for completeness two additional standard problems 
whose complexity has previously been resolved for unit disk and grid graphs. 

The new results of this paper are those marked by asterisks. For the case of 
clique, we present a polynomial time algorithm that will find a maximum-sized 
clique in a unit disk graph, given an intersection (containment, proximity) model 
for the graph. For the sake of completeness, we also briefly sketch proofs of the 
results attributed to [7,9, lo] in Table 1, as these references merely reported the 
results, and to our knowledge no proofs have appeared. Our proof of the result 
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Table 1 

Problem Unit disk graphs Grid graphs 

CHROMATIC NUMBER 

CLIQUE 
INDEPENDENT SET 
DOMINATING SET 
CONNECTED DOM. SET 
HAMILTONIAN CIRCUIT 

STEINER TREE 

NP-complete [7,9] 
Polynomial [ * ] 
NP-complete [ * ] 
NP-complete [ 161 
NP-complete [ 151 

NP-complete [8] 
NP-complete [4] 

Polynomial 

Polynomial 
Polynomial 
NP-complete [ 101 

NP-complete [ * ] 
NP-complete [8] 
NP-complete [4] 

from [lo] also implies NP-completeness for the previously open independent 
dominating set problem for grid graphs. 

The remainder of the paper is divided into sections, one per problem. We shall 
use the prefix ‘UD’ to specify that the problem in question is restricted to unit 
disk graphs and the prefix ‘GRID’ for restrictions to grid graphs. When a problem 
name is given in all capital letters, as in ‘UD DOMINATING SET,’ we refer to 
the decision problem version of the problem (i.e., given G and an integer k, is 

there a dominating set of size k or less?), rather than the optimization version 
(i.e., given G, find a minimum size dominating set). We must consider decision 
problems since NP-completeness is formally defined only in terms of such 
problems. In proving NP-completeness we will omit the required proof of 
membership in NP, since this always follows from the membership of the 
unrestricted problem. (We assume the reader is familiar with these notions; if 
not, see [5].) 

2. UD CHROMATIC NUMBER 

A graph G = (V, E) is k-colorable if there is a partition of the vertices into k 

sets VI,..., V, such that no edge joins two vertices in the same set. In UD 
CHROMATIC NUMBER we are given a graph G and an integer k and are 
asked whether G is k-colorable. This problem is of interest primarily because of 
its relevance to frequency assignment problems in broadcast networks [7]; with 
the proximity model, it is also equivalent to a geometric problem, DISTANCE-d 
PARTITION OF POINTS IN THE PLANE [9]. We show that UD 
CHROMATIC NUMBER is NP-complete, even if k is fixed at 3. Hale [7] 
references a proof of this due to Orlin, and Johnson [9] references a proof due to 
himself and Burr. Since neither proof to our knowledge has appeared in the 
literature, we include the latter proof for completeness. Note that CHROMATIC 
NUMBER is trivial for grid graphs, since all grid graphs are bipartite and hence 
two-colorable by definition. 

Theorem 2.1. UD CHROMATIC NUMBER is NP-complete, even for fixed 

k = 3. 
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Proof. We sketch a polynomial time transformation to the given problem from 
PLANAR GRAPH 3-COLORABILITY with maximum degree 3, which is 
shown to be NP-complete in [3]. We transform a planar graph G = (V, E) with 
maximum degree 3 into a unit disk graph G’ such that G is 3-colorable if and 
only if G’ is 3-colorable. We construct an intersection model for G’ by making 
use of the following result from [19]: 

Lemma 2.1 (Valiant [19]). A planar graph G with maximum degree 4 can be 
embedded in the plane using 0( 1 VI) area in such a way that its vertices are at 
integer coordinates and its edges are drawn so that they are made up of line 
segments of the form x = i or y = j, for integers i and j. 

Algorithms to produce such embeddings efficiently are given for example in 

[l, 81. Using one of them we construct such an embedding of G, adjusting the scale 
so that the horizontal and vertical straight line segments that make up edges are 
each of length at least 10. The vertices of G are modeled by circles of radius l/2 
centered at the locations of the vertices in this embedding. The edges of G are 
replaced by chains of radius-l/2 circles, specified as follows. If ei is the edge 
between vertices u and v, then the set of circles used to represent it is 
C[ei] = {cjl, c:l,, cil, ch, ch, ci2, . . . , c,fkL, CL,, cik,}, where ki depends on the 
length of the embedding of ei. These circles are positioned so that they yield an 
intersection pattern like that shown in Fig. 1 for an edge made of a single 
horizontal line segment. The reader may verify that this representation for a 
horizontal edge can be modified to bend around corners if the edge to be 
represented consists of both horizontal and vertical segments (given that each 
segment by construction is of length at least lo), and that the following two 
properties hold: 

(1) Any proper 3-coloring of C[e,] U {u, v} assigns u and v different colors. 
(2) For all possible pairs (x, y) of different colors from the set { 1,2,3}, there 

exists a proper 3-coloring of C[eJ U {u, v} which assigns u and v colors x and y 
respectively. 

It is an easy matter using these properties to see that G is 3-colorable if and 
onlyifG’is Cl 

Fig. 1 
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3. UD CLIQUE 

A clique in a graph G = (V, E) is a subset of the vertices, each pair of which is 
joined by an edge. Note that the problem of finding a maximum clique in a grid 
graph is trivial; a grid graph can have no cliques of size greater than 2. The 
problem is less trivial for other classes of intersection graphs, but most still have 
polynomial time algorithms. In many cases, this is a consequence of the efficient 
clique algorithm for perfect graphs [6]. In other cases, it is a consequence of the 
‘Helly property’. This holds for many classes of intersection graphs, and requires 
that when n objects intersect pairwise, their n-fold intersection is a non-empty 
set. If an intersection graph obeys the Helly property and the number of potential 
‘intersection regions’ is sufficiently small, we can thus find maximum cliques for it 
‘quickly’. We simply compute for each region the set of objects containing it, and 
output the largest such set found. 

Unfortunately, sets of equal-sized disks in the plane do not necessarily satisfy 
the Helly property. In Fig. 2 there are two sets of three disks. In the first set three 
disks intersect at a common region. In the second, three disks intersect pairwise, 
but not at a common region. 

Nevertheless, despite the fact that unit disk graphs need neither obey the Helly 
property nor be perfect, the clique problem remains tractable for them. In the 
remainder of this section we show how to find a maximum clique in a unit disk 
graph G in polynomial time, given a proximity model for G. The algorithm we 
present may well not be the most efficient possible. However, we are here 
interested only in demonstrating polynomial time solvability, and will leave 
running time improvements to future researchers. Our approach is based on the 
following straightforward observations. 

Let A and B be a pair of points in the model for G whose distance 
D(A, B) s d, where d is the critical distance specified by the model. Let RAB 
denote the intersection of two closed disks of radius D(A, B), one centered at A 
and one centered at B. See Fig. 3. Let HAB = R,, fl V. 

Fig. 2 
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Fig. 3 

Observation 3.1. If A and B are maximally distant points in a set V’, then 
V’ E HAB. 

Corollary 3.1. Zf C k the vertex set for a maximum-sized clique in G, then 
CsHABforsomeA, BEV, withD(A, B)Sd. 

Now partition RAB into RiB and RzB as shown in Fig. 4 with the line segment 
from A to B assigned to region RfiB. Let HiB consist of the points in RiB n V 
and IiAB consist of the points in R%B n V. See Fig. 4. 

Fig. 4 
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Observation 3.2. IfX and Y are points in Hi, (Z&), then D(X, Y) C d. 

Corollary 3.2. The subgraph of G induced by I&, is the complement of a bipartite 

graph. 

Observation 3.3. A maximum independent set in a bipartite graph on n vertices 
can be found in time O(r?). 

Proof. This is perhaps not as straightforward as the previous observations, but is 
a well known application of bipartite matching. Recall that an independent set in 
a graph G = (V, E) is a subset V’ c V such that no edge in E joins two members 
of V’, and a matching is a set of edges, no two of which share an endpoint. 
Suppose A4 is a maximum matching in a bipartite graph G. Given M, we can 
build a maximum independent Z set as follows. We start by including the set I0 of 
vertices not contained in the matching. Note that these vertices must be 
independent or else we could find a larger matching. Then for each edge in M, 
we take an endpoint that is not adjacent to any vertex chosen so far. (It can be 
shown that at least one endpoint must satisfy this property, as a failure would 
imply the existence of an augmenting path, and thus contradict the maximality of 
M.) In this way we construct an independent set of size n - I&II (in linear time, 
given M). This is the largest size possible since at most one of the endpoints of 
each of the edges in M can be in an independent set. Since a maximum matching 
in a bipartite graph can be found in time O(n2,‘) by the techniques of [2], the 
observation follows. Cl 

Corollary 3.3. Given the proximity model of a unit disk graph G = (V, E), one 
can find a maximum clique for G in time 0(IV)4.5). 

Proof. By Corollary 3.1, we need only consider the subgraphs induced by ZZAB 
for pairs of vertices A, B E V with D(A, B) cd. There are O(lVl’) such pairs. A 
maximum clique in such a subgraph is a maximum independent set in its 
complementary graph, which by Corollary 3.2 is bipartite. Thus to find a 
maximum clique in the subgraph induced by HAB, we need only construct the 
appropriate bipartite graph (in time that is certainly O(lV12)) and then apply the 
0(n2.‘) algorithm of Observation 3.3, for an overall bound of 0((V(2.5). 
Multiplying by the potential number of A, .B pairs gives the claimed running 
time. 0 

4. UD VERTEX COVER and UD INDEPENDENT SET 

We have already defined ‘independent set’ in the proof of Observation 3.2 
above. A vertex cover in a graph G = (V, E) is a subset V’ of the vertices such 
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that for all edges e E E, at least one endpoint of e is in V’. It is an easy 
observation that if V’ is a vertex cover for G, then V - V’ is an independent set. 
Thus for any class of graphs, the problem of finding a minimum vertex cover is 
polynomial equivalent to that of finding a maximum independent set. By 
Observation 3.2, both are solvable in polynomial time for grid graphs. Both are 
NP-hard for unit disk graphs as a consequence of the following theorem. 

Theorem 4.1. UD VERTEX COVER is NP-complete. 

Proof. The reduction is from PLANAR VERTEX COVER with maximum 
degree 3, which was shown NP-complete in [4]. As before, we transform the 
planar graph G with maximum degree 3 to a unit disk graph G’ such that G has a 
vertex cover S with ISI c k if and only if G’ has a vertex cover S’ with IS’1 sk’. 

We draw G in the plane using Lemma 2.1. We then replace each edge {u, v} 
by a path having an even number 2k,, of intermediate vertices, in such a way that 
an intersection model can be constructed. (This is clearly easy to do. Note, 
however, that a grid graph embedding will not be possible unless G is bipartite, 
which is why this construction does not work for grid graphs.) 

It is straightforward to verify that G has a vertex cover S such that ISI <k if and 
only if G’ has a vertex cover S’ such that IS’1 c k + CuveEcGj k,,. Cl 

5. UD DOMINATING SET 

A dominating set in a graph G = (V, E) is a subset V’ of vertices such that 
every vertex u E V is either in V’ or adjacent to some member of V’. UD 
DOMINATING SET models a network problem of locating emergency senders 
[15], locating emergency services [16,18], and a geometric problem sometimes 
called OPTIMAL BOMB TARGETING [9]. The NP-completeness of UD 
DOMINATING SET was proved in [16] and an unpublished proof of NP- 
completeness for GRID DOMINATING SET was attributed to Leighton in [lo]. 
We here sketch our version of the latter proof, using a transformation that also 
yields NP-completeness for GRID INDEPENDENT DOMINATING SET (An 
independent dominating set is a dominating set that is also an independent set). 

Theorem 5.1. GRID DOMINATING SET is NP-complete. 

Proof. We sketch a transformation from PLANAR DOMINATING SET of 
maximum degree 3, which is known to be NP-complete [5]. Given a planar graph 
G with maximum degree 3, we construct a unit disk graph G’ such that G has a 
dominating set D with IDI G k if and only if G’ has a dominating set D’ with 
JDI s k’. 
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Using Lemma 2.1 we can embed G in the plane with line segments parallel to 
the x- or y-axis. It is an easy matter to ensure that no two parallel lines are 
closer than two units apart, that each line segment has integer length, and that 
the total line length for the line representing an edge {u, v} is of the form 
3k,, + 1 for some integer k,. A grid graph G’ is induced by this drawing, 
containing exactly those integer points lying on a line in the drawing. 

It is an easy exercise to verify that there exists a dominating set D in G with 
IDI c k if and only if there exists a dominating set D’ in G’, with ID’1 c 

k+C k Cl uvcE(G) uu* 

A dominating set for the grid graphs constructed in the above proof is also an 
independent dominating set, as long as k, > 1 for each edge. Thus GRID 
INDEPENDENT DOMINATING SET is also NP-complete. 

6. UD CONNECTED DOMINATING SET 

A dominating set is connected if the subgraph induced by it is connected. UD 
CONNECTED DOMINATING SET has been studied by Lichtenstein [15], who 
states that the problem has been posed by Spira in connection with packet radio 
network design. It is equivalent to the problem of locating a connected set of 
emergency senders in a network. Lichtenstein proved the problem to be 
NP-complete for unit disk graphs; we show that it remains NP-complete even 
when restricted to grid graphs. 

Theorem 6.1. GRID CONNECTED DOMINATING SET is NP-complete. 

Proof. The reduction is from PLANAR CONNECTED VERTEX COVER with 
maximum degree 4, which was shown NP-complete in [4]. We transform a planar 
graph G = (V, E) with maximum degree 4 into grid graph G’ such that G has a 
connected vertex cover S with IS] <k if and only if G’ has a connected 
dominating set D’ with ]D’I 6 k’. We assume without loss of generality that G is 
connected. 

Using Lemma 2.1, we first embed G in a 2-dimensional grid with edges drawn 
using line segments of length at least four, and with parallel lines at least 4 grid 
squares apart. The set V’ of vertices of our grid graph G’ will be made up of 
three sets: V,, the set of grid points corresponding to vertices in G, V,, the set of 
grid points that are internal to the paths corresponding to edges of G, and V,, a 
set consisting of one unique new neighbor for each member of V, that is not 
adjacent to a member of VI. In what follows, we shall refer to the vertices of V, 

that are adjacent to vertices in V,, and hence to no vertices in V,, as connector 

vertices. For each vertex u E V, we shall denote the vertex corresponding to u by 
f(u). For each edge {u, u} in G we shall denote the set of non-connector vertices 



174 B.N. Clark et al. 

from V, in the path corresponding to edge {u, V} by f{u, v}, the connector 
vertex adjacent to f(u) by c(u, v), and the connector vertex adjacent to f(v) by 
c(v, u). Fig. 5 shows what a subgraph of G’ corresponding to an edge {u, V} of 
G might look like. Note that the vertices of V, are chosen so that each is adjacent 
to precisely one vertex of V, (although it may be adjacent to as many as two other 
vertices of VJ. Such choices are possible because by assumption all parallel lines 
are at least 4 grid cells apart in the embedding of G, and all line segments are of 
length at least 4. 

The construction of G’ can clearly be accomplished in polynomial time. To 
complete our proof, we claim that there exists a connected vertex cover C in G 
with ICI =z k if and only if there exists a connected dominating set D in G’ with 
IDI < k + jV,l - IEl + [VI - 1. 

First suppose that the desired connected dominating set C exists. Since C is 
‘connected,’ there is a set Ec of (Cl - 1 edges which forms a spanning tree for 
the subgraph induced by C. Since C is a dominating set, this can be extended to a 
spanning tree Et for all of G in which all vertices except those in C have degree 1. 
Our connected dominating set D for G’ then consists of the following four 
classes of vertices: (1) f(u) for each u E C, (2) f{u, V} for all edges {u, V} in G, 
(3) both c(u, V) and c(v, u) for all edges {u, V} in ET, and (4) a single 
c E {c(u, v), c(v, u)} for each {u, V} in E-ET, that c chosen so that it is 
adjacent to a vertex of type (1). (Such a vertex exists because C was a dominating 
set for G.) Note that IDJ = ICI + IV,1 - [El + IV1 - 1 s k + IV21 - IEl + IV1 - 1 
(since (Cl 6 k, by assumption). 

We argue that D is a dominating set as follows: Each member of V, is 
dominated by its neighboring vertex from V,. Each vertex f(u) for u E V - C is 
dominated by the neighboring connector vertex c(u, v), where {u, V} is the edge 
of ET that contains u. Each omitted connector vertex c(u, V) is dominated by its 
neighboring vertex in f{u, v}. All other vertices are in D. The subgraph of G’ 
induced by D is connected because all vertices in the embedding of E, are 
present (except for vertices f(v) where v is not in C and hence has degree 1 in 
ET), and because the sets f{u, V} in D are all connected by connector vertices in 
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D to vertices in {f( u : u E C} Thus D is a connected dominating set for G’ of the ) 
appropriate size, as claimed. 

Suppose conversely that there is a connected dominating set D with IDI c 
k + IV,1 - JEl + IV1 - 1. We shall show that G has a connected vertex cover of 
size k or less. We proceed by a series of observations that show that D can be 
assumed to be of a standard form. 

Lemma 6.1. There exists a minimum-sized connected dominating set for G’ that 
contains no vertex from V,. 

Proof. Let D be a minimum-sized connected dominating set containing the 
minimum possible number of vertices from V,, and assume this number exceeds 
0. Let {u, v} be an edge of G whose embedding in G’ contains a vertex from 
V, rl D. Consider the pairs (x, y) where x E f {u, v} and y is its neighboring vertex 
from V,. If D contains at least one member from each pair, then the set D’ 
obtained from D by omitting all second components in pairs (x, y) and taking all 
first components will be a connected dominating set with ID ‘I s IDI that contains 
at least one less element of V,, contradicting our choice of D. 

Thus D omits both vertices from some pair (xi, yJ. Let z be the vertex in D 
that dominates yi, and note that z must itself be a member of V,. Note further 
that, since D is connected, it must contain all the vertices on a path from z to 
either f(u) or f(v), say f(u). Let P consist of all the pairs (x, y) through which 
this path passes, including the pair of which z is the second component. Note that 
D must contain at least one member of each pair in P. Moreover, since this path 
starts with a vertex in 2r3 and must pass through at least one vertex of V, (the 
neighbor of the connector vertex C(U, v)), it must contain both members of some 
pair (x’, y’) in P. Thus if D’ is the set obtained from D by omitting all second 
components of pairs in P and taking instead Xi together with all the first 
components, then D’ will be a connected dominanting set with ID’1 s IDI that 
contains at least one less member of V,, again a contradiction. This exhausts the 
possibilities and proves the lemma. Cl 

Lemma 6.2. Let D be a connected dominating set satisfying Lemma 6.1. Then: 
(1) For each edge {u, v} in G, D contains all vertices in f {u, v} together with at 

least one connector vertex c(u, v) or c(v, u) and the associated endpoint (f(u) or 

f(v))7 
(2) For each v E V such that f (v) is not in D, there must exist some edge {u, v} 

in G such that D contains both connectors c(u, v) and c(v, u) and such that 

f(u) E D. 
(3) Let C = {u E V: f(u) E D}, and let Ee be the set of edges in G that have 

both their endpoints in C and both their connector vertices in D. Then Ec spans the 
subgraph of G induced by C and hence has at least ICI - 1 members. 
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Proof. (1) follows immediately from the fact D is a connected dominating set and 
contains no members of V,. (2) holds for any connected dominating set D. For 

(3), let f(C) = {f(u): u E C} = VI fl D. Any path in D that connects two vertices 
in f(C) cannot pass through a member of V, -f(C) or through the embedding of 
an edge that does not have both its connector vertices in D. Thus, since D 
connects together all the vertices in f(C), Ec must connect together all the 
vertices of C. •i 

To complete the proof of Theorem 6.1, we claim that C is the desired 
connected dominating set for G. C is a dominating set by part (1) of Lemma 6.2; 
it is connected because, by part (3), its induced subgraph is connected. Finally, by 
all three parts of the Lemma, 

IDI 2 ICI + 14 - IEI + (IV - ICI) + WI - 1). 
By assumption, however, 

IDI s k + IV,1 - IEl + ([VI - 1). 

Consequently, I Cl =G k. 
Thus the desired vertex cover exists if and only if the desired dominating set 

exists, and the proof is complete. 0 

7. Concluding remarks 

In this paper we have extended our knowledge about the relative complexity of 
problems under the restriction to unit disk graphs and to grid graphs. From these 
complexity results, it would seem that unit disk graphs are more closely related to 
planar graphs in terms of complexity than to grid graphs. For all of the problems 
mentioned here, the complexities for unit disk graphs and for planar graphs 
agree. Are there any problems for which the two classes yield different 
complexities? Graph isomorphism is a candidate, being solvable in polynomial 
time for planar graphs, but currently remaining open for unit disk graphs. 

A perhaps more significant open problem is determining the complexity of unit 
disk graph recognition. As remarked above, we suspect that the problem is 
NP-hard. It appears that the corresponding problem for grid graphs is NP-hard 
[14], and an extension of the proof to unit disk graphs is currently under study. 

Finally, we observe that the kinds of questions considered here can and have 
been studied for many other classes of graphs. Recent surveys of such results can 
be found in [lo, 111. 
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