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Abstract

We propose a formal generalization for various works dealing with Heuristic Search in State Graphs. This gen-
eralization focuses on the properties of the evaluation functions, on the characteristics of the state graphs, on the
notion of path length, on the procedures that control the node expansions, on the rules that govern the update
operations. Consequently, we present the algorithm fai®ignd the sub-familyA, which include Nilsson’s A

or A* and many of their successors such as HPA, B,A,, C, BF¢, B', IDA*, D, A**, SDW. We prove general
theorems about the completeness and the sub-admissibility that widely extend the previous results and provide a
theoretical support for using diverse kinds of Heuristic Search algorithms in enlarged contexts, specially when the
state graphs and the evaluation functions are less constrained than ordinarily.
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1. Introduction

This paper is a part of a study (Farreny, 1995, 1996a,b,c, 1997a,b,c) that aims to compare
and to extend various works dealing with Heuristic Search in State Graphs. Our main goal

here is to present the proofs of general results concerning two basic properties: 1) the
completeness and 2) the admissibility or sub-admissibility.

1.1. Position of this paper and contribution

Heuristic Search algorithms are studied from about thirty years; Steward, Liaw, and White
(1994) list one thousand papers concerning this topic; among them, several hundreds refer
to Heuristic Search in State Graphs. What do we propose here? We do not propose another
particular algorithm but an unifying and generalizing point of view. We formally characterize
some wide families of algorithms that azempleteor admissibleor sub-admissiblé These
families include, for instance, the algorithms A antl(dart, Nilsson, and Raphael, 1968;
Nilsson, 1971, 1980) and diverse successor algoritrsush as HPA (Pohl, 1969, 1970,
1977), another extended form of A (Pohl, 1973), a specific form of A (Harris, 1973, 1974),

B (Martelli, 1977), A (Pearl and Kim, 1982, 1984) ,AGhallab, 1982; Ghallab and Allard,

1982, 1983), C (Bagchi and Mahanti, 1983, 1985); BiFearl, 1984; Dechter and Pearl,



354 FARRENY

1985, 1988), B(Mero, 1984), IDA (Korf, 1985a,b, 1988), D (Mahanti and Ray, 1988)* A
(Dechter and Pearl, 1985, 1988) and SDVél{ilahd Kaindl, 1992). We do not evoke here an
application or an experimentation but we present original results concerning some general
families of Heuristic Search algorithms. Obviously, applications and experimentations are
a very important topic. The papers that describe actual applications of Heuristic Search
in State Graphs to concrete domains (such as robotics, natural language understanding,
pattern recognition, etc.) are relatively few; the papers that present experimentations with
symbolic problems are far more numerous; most of them cope with the Travelling Salesman
Problem or with then-puzzle (generallyy = 8 or 15, seldonm = 24 or more). As teacher

as much as researcher we are very interested in this kind of works. Nevertheless, in the
present paper the contribution is exclusively theoretical. Indeed, we are also very interested
in the exact statements and proofs of the algorithm properties. But, at times, the statements
of the properties of some Heuristic Search algorithms or the statements of their proofs are
incomplete; in some cases they are mistaken; very often the statements of the properties
are over-constrained. In the following, we show that the constraints usually stated for the
Heuristic Search in State Graphs, in order to ensure the completeness or the admissibility
or the sub-admissibility, can be widely relaxed; so, we prove that these properties can
be ensured when working with more general state graphs, or with more general evaluation
functions, or with more general paths lengths or with more general algorithmic mechanisms;
for instance, the arc costs and the heuristic estimates may be not exclusively positive; for
instance yet, the heuristic estimate of any node may be a variable rather than a constant. The
statements and the proofs of the theorems that we present hereunder supply a theoretical
support for applying diverse Heuristic Search algorithms (previously known or not) in
enlarged contexts. Among the works whdeemal motivations have notably stimulated

the present study, let us quote Vanderbrug (1976), Gelperin (1977), Bagchi and Mahanti
(1983), Pearl (1984), Dechter and Pearl (1985), Korf (1988) and Russell (1992).

1.2. Plan

In Section 2 we recall previous results about the completeness and the admissibility of
various Heuristic Search algorithms; then we discern several interesting ways to relax their
definitions and running conditions. In Section 3 we propose a formalization that covers many
known codes and running contexts. In Section 4 we prove general theorems concerning the
termination with discovery of a path from the start node to a goal node. In Section 5 we
prove general theorems concerning the length of the discovered path.

2. Completeness, admissibility and sub-admissibility, previous results and ways
for extensions

First we recall the definitions of Nilsson’s A and Algorithms (Hart, Nilsson, and Raphael,
1968; Nilsson, 1971, 1980). Then we report under which precise conditions it has been
established that these algorithms terminate by discovering a solution possibly optimal.
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1 procedure Heuristically-Ordered-Search-A-of-Nilsson :

2 open < {s}; closed < {}; gmemo(S) = 0; fmemo(s) < h(s)

3 until open = {} repeat

4 m « best-first-extraction

5 if m e T then edit-reverse-path stop endif

6 open «— open - {m} ; closed « closed + {m}

7 for each n son of m repeat

8 neo <= Imemo(M) + ¢(M,n)

9 ith € open and gneo < Gmemo(N) then update-father&gmemo&fmemo endif
10 if n € closed and gneo < Gmemol(N) then update-father&gmemo&fmemo
11 open « open + {n}

12 closed « closed — {n} endif

13 itn ¢ closed and n ¢ open then update-father&gmemo&fmemo
14 open « open + {n} endif
15 endrepeat

16 endrepeat

17 procedure edit-reverse-path :
18 until m = s repeat write m ; m <« father(m) endrepeat ; write "s"

19 procedure update'father&gmemo&fmemo .
2  father(n) <— m; gmemo(N) <= Gneo; fmemo(N) <= Gmemo(n) + h(n) _

21 procedure best-first-extraction : return J* of open such as fmemo(n*) = qe open fmemo(Q)

Figure L Algorithm A of Nilsson.

2.1. Algorithms A

The algorithm described in figure 1 is widely knownagorithm A (Nilsson, 19803. It
searchs a goal node by progressively expliciting the state graph from the stag. idde

state graph is supposed to sen-finite* A cost dm, n) is associated to each anm,(n)

which joins a noden to a noden. The set of the goal nodes is denotedTbyline 5); if

a goal is discovered, the algorithm writes the reversed node list of a path from the start
node to the found goal (lines 17, 18) and terminatesp(in line 5). Possibly, the algorithm
terminates without discovering any goal node (test in line 3), even if such a node exists
in the considered state graph. Possibly, it does not terminate. At the beginning of each
execution of the loop 3—-1@penis the set of nodes available for the next step of the search;
the loop is constituted by a nodstraction(lines 4 to 6) followed by thexpansiorof the
extracted node (lines 7 to 1%)lpsedis the set of nodes previously extracted and expanded
that are not available now. The algorithm usesaaluation function ffor choosing the

node that must be extracted (from open) and then expanded. In the following, outside of
the algorithm codes, we shall dendtgn) the later value of the evaluation function at the
noden when thexth extraction is about to be executed. Nilsson and many authors write

f (n) rather thanf,(n); but, in order to correct and to complete the previous theoretical
results of Hart, Nilsson, and Raphael (1968, 1972), Gelperin (1977) has proposed to denote
explicitely that the evaluation of any node varies when the algorithm is running. Here, index
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x (we shall saythe rank ¥ is aimed to recall that the same nodeénay be successively
evaluated in different ways, according to the successive extractions.

The algorithm extracts frompenone of the nodes that own the minimal evaluation (lines
4 and 21); this mechanism may be interpreted like this: the more the evaluation of a node is
small, the more we hope that this node leads a path to a goal. The sons of the extracted node
are evaluated (for the first time or afresh); any new son is popén if a son is already in
closedand if its present evaluation is less than its previous evaluation then the node is got
out fromclosedand put inopenagain.

By definition of A (Hart, Nilsson, and Raphael, 1968; Nilsson, 1971, 1980)ttv® are
calculated using the following formuldy (n) = gx(n) + h(n), wheregy (n) is thestandard
termwhile h(n) is theheuristic term

Thestandard term g(n) is recursively calculated as the shorter length of apftim
s to n known after thexth extraction. Whem is fixed, g« (n) decreases (not strictly) when
X increases, thus we may considgrn) as a decreasing overestimate of the minimal path
length, if any, froms to n; this minimum is denoted*(n) below. The functiorg depends
on two variables: the rank and the noda; it is called thestandard functionlin figure 1,
Imemo(N) keeps track of the minimum of valugg (n) calculated until now for node;
likewise, fnemo(n) memorizes the minimum of valuef (n) calculated until now fon;
fatherf) records the father node whose expansion led to fix the later galeg@o(n). So,
any node inopenis the end of a path frors, whose length igmemo(r1) and that only
includes expanded nodes; in addition, any path fseamn whose length is smaller has to
include a node not yet expanded.

Theheuristic term kin) only depends on nodeat whichheuristic function hs applied
and not of the extraction rank. For this reason, we say that the heuristic fuhds@tatic
while we say that the standard functign(and the evaluation functiori) is dynamic®
Moreover, Nilsson’s A algorithm (and most of its successors) supposes that the héuristic
is positive. The measure (according to the length function; l&gg) of a minimal path, if
any, fromn to the sefl of goal nodes, is denotdti (n); so,h*(s) is the length of a minimal
path, if any, from the start node to the set of goals. Commdnly) is considered as an
estimate oh*(n).

2.2. Algorithms A*

For Nilsson (1980) and other authors, algorithms A are designated yh&n the state
graphG and the heuristic function satisfy the relation: for any nodeof G, h(n) < h*(n).
We say thah is alower-boundingunction.

2.3. Completeness and admissibility for A anid A

An algorithm of Heuristic Search in state graphs is caltedhpleteif and only if it is
guaranteed that it terminates finding a path from the start re)de the set of goal nodes
when such a path exists. An algorithm is calkdimissibleif and only if it is complete

and the length of the found pathlig(s). The admissibility of theA*’s is proved by Hart,
Nilsson, and Raphael (1968), Nilsson (1971, 1980), and Pearl (1984) supposing that, at
once: 1) the state grafh is son-finite and it contains at least one goaE®)- 0, V(m, n)
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arc of G, c(m, n) > § (this property characterizes the so-caldegraphg, 3)h > 0. Under
the same conditions any algorithm A is complete.

2.4. Admissibility/sub-admissibility for other algorithms

An algorithm issub-admissiblé it terminates finding a path frosto T whose lengthigear

to h*(s). According to the relations that concretize tiear tonotion, thesub-admissibility

has different meanings. Figure 2 reports previous results concerning the admissibility of
HPA, B, C, IDA*, A** and the sub-admissibility of Harris’ A, Pohl's A,’AA,, B', BF¥,

D; for a while, it is sufficient to consider columns 1 and 9.

2.5. Several interesting ways to relax &nd other algorithms

Figure 2 suggests several ways to relaxafd various other algorithmgshile preserving
diverse forms of sub-admissibility

2.5.1. Constraints concerning the state graph and the length functio@onsider columns

2 to 4. All the mentioned algorithms refer gegraphs(possibly infinite) or finite graphs;
note: in the first case, all the costs atéctly positive and in the both cases they are posttive.
The length of a solution path is always calculated asstiraof the costs of its arcsWe
shall relax these constraints.

2.5.2. Constraints concerning the heuristic function and the evaluation functiorCon-

sider columns 5 and 6. Most authors associate admissibility with heuristic functions that
are at once positive, static and lower-bounding. Nevertheless, we remark,tA&t Bnd D
algorithms can assure minimal solutions using non-static heuristic functions. We observe
a form of sub-admissibility for Harris’A and for Awhile these algorithms use non-lower-
bounding heuristic functions. We observe also a form of sub-admissibility for Pohl's ex-
tended A while this algorithm uses a non-static and non-lower-bounding heuristic function.
Moreover, except for BFand A™, the evaluation functiorf is always calculated as the
sum (or a linear combination, for HPA) of two functions: the standard fundjiased

by Nilsson’s A and a heuristic function (theof algorithm A or a variant’). From these
examples, we shall propose a more general point of view because: 1) in some circumstances
(Gelperin, 1977) the arc costs (thus the functidng, h) may be non-positive, 2) it may be
natural to adjust, at least for some nodegthe quantityh(n) in proportion as the algorithm

is running, 3) it may be easier to know (or more attractive to use) a non-lower-bounding
heuristic function, and 4) it may be pertinent to examine the interest of other forrhs of
than a linear combination @f andh or h'.

2.5.3. Constraints concerning the extraction modeConsider column 7. Most algorithms
executebest-firstextractions: as Adoes, they systematically extract one of the nodes of
openthat presently minimize the evaluation function. Thieahd A relax this mechanism.

We shall offer more possibilities; so, the choice of the nodes to expand may be controlled
according to a secondary criterion, as previously suggested by Ghallab and Allard (1982)
and Pearl and Kim (1982).



358 FARRENY
1 2 3 4 5 6 7 8 9
Name | Arc Length State Heuristic Evaluation Extraction |Updating Length of the
costs | function graphs function function mode type discovered path
h : static
A* | 50| Paea | 8-graphs 0<h<h* g+h best-first [1&2&3 h*(s)
h : static (1 —m)g + oh X h*(s)
HPA| >0 | $ . | 8-graphs 0<h<h* [0<o<l] best-first {1&2&3 [only if o < 1/2]
ended dynamic and| g.(n) + h’,(n)
extende iti ’
. positive h = g,(n) + h(n) +
so| @, finite  [derived from| ~ °* _fi < #
éo;])lf add graphs R l(l—cht;"("))h(n) best-first 3 < (1 + A)h*(s)
<h<h*
0<h<h (99
A h : static
) i 0<h . N
of Harid >0 & ada | B-graphs H<traH g+h best-first [1&2&3 <h*s)+H
(H>0)
h : static
B >0} Lada | 8-graphs 0<h<h* g+h best-first |1 &2&3 h*(s)
- " ) In, if fy(ny) <
< © stat P
Ae | >0| Luau | S-graphs | /20T g+h 1+ of (mo*|1&2&3 | <1 +e)h*(s)
€20
without | h : static I, if f(n,) <
infinite 0<h -
Ae | 50| Lue |path whose . g+h L+ &)™ 4283 | < (1+ e)(1+ 0)h*(s)
len : h<(E+o)h*
gth is (e20)
finite (020)
h : static
C [>0] Laaa | 8-graphs [ o 0 g+h best-first |1&2&3 h*(s)
kynamic and
, positive h’ , ~
B” | 50| £uda | 5-graphs [derived from g+h best-first 3 h*(s)
static h
0<h<h*
£ agd dynamic and fy(n) = < '{j_l(M)
but ii:ieas positive b [ g cp Py ) (M = min for all
derived from S i
BF*| -0 for 8-graphs [ o (¥ strictly best-first ] paths fﬁafiom stoT
extension 0<h<h* increasing) ofp c P f(ﬂ)p)
[ dynamic and . fx(n) =
. positive h’ max -
A >0 | £asa | S-graphs lderived from| pe Pyp© best-first 3 h*(s)
static h ’
0<h<h* {gx(p)+h(p)}
finite h : static
IDA*| 20| £ graphs | 0<h<h* g+h best-first [1&2&3 h¥*(s)
4 . 4 = minimal length of
YRarmic an paths P from s to T
positive h L. max
. minimizing
D | >0| £ | 8-graphs denv?d from g+l best-first 3 pe P
static and {£ add(Pp)+h(p)}
positive h [Note: if h < h*, this
quantity is h*(s)]

Figure 2 Admissibility/sub-admissibility of diverse Heuristic Search algorithms: a survey. Reptls the
minimal number of arcs frommto n, known at rankk; N is an upperbound for a}l andn. Py j is the pointer path

of noden at rankx (see Section 3.8). The updating types are presented in Sections 3.1 and 3.3, and the extraction

modes in Section 3.4. At rank ny is the extracted node anfg the min of fx(n) for all n in open.F} is the part

of F fromsto p. Actually, some results reported in last column were originally established with more restrictive

hypothesis not explicited here (it is the case for Harris’A*BF*).
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2.5.4. Constraints concerning the updating typeConsider column 8. An important (and
perhaps undervalued) difference between algorithms lies in the manner to update the values
and the pointers associated to each node. The difference appears if we compare the algo-
rithms that use statiec with those that use dynamiic the latter can dissociate the lowerings
of g and f. The difference also appears when an algorithm (for instanc&) @&#es not
exploit theg values: then the pointers are updated if and only if thealues are lowered.
We shall develop this topic in Sections 3.1 and 3.3.

Hereafter we present an unifying and generalizing point of view.

3. Formalizations and generalizations

We present in Section 3.1 a general Heuristically-Ordered Search algorithm, fashed
typel; its code does not refer to arc or path lengths. We propose in Section 3.2 a general
definition of thelengthof a path. In Section 3.3, we introduce algorithitief type2 and

¢ of type3 whose codes refer to this general length, in two different ways. Until now, we
have not discussed tleatraction modef the algorithm<€, whatever the type (1, 2 or 3); in
Section 3.4 we propose a new extraction mode nafiegtraction In Section 3.5, among
algorithms ¢, we distinguish the sub-famil. Releasing the contraints relative to the
evaluation functions or to their heuristic components (Section 3.6) and also the constraints
relative to the state graphs (Section 3.7) we access to application contexts larger than usual.
This formalization leads to prove general theorems concerning the completeness (Section 4)
and the admissibility/sub-admissibility (Section 5).

3.1. Algorithms®@ of type 1

We call the code presented in figureaBgorithm © of typel. The reference to the evaluation
function f is only done in the assignment instructions of the lines 2 and 9. Later, we shall
make the algorithm more precise by discussingekieactioninstruction in line 5 and we
shall consider the application circumstances: what kind of evaluation funcfipngat

kind of state graphs, what kind of path lengths in these graphs?

According to the manner to make the line 5 more precise, we may define different
extraction modegstudied in Section 3.4). The lines 8-15 realize éxpansionof the
extracted noden. Each extracted node that it is not a goal (test in line 6) is immediately
expandedall its sons are considerepdftial expansions are not allowed in this paper).

According to the manner for governing the updatingf@ndsn) and fatheng), we may
define differentypesfor algorithms €. In algorithm @ of typel, the update orders comply
with the following rules:

at the time of the expansion of any node m and for any son n of m,

1) fmemo(N) receives f(n,extraction-rank) except if the femo(n) value was
already smaller and

2) father(n) receives m except if fnemo(n) is Not lowered by the step 1.
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1 procedure Heuristically-Ordered-Search-0-type-1 :

2 open « {s}; closed «— {} ; extraction-rank < 0; fmemo(S) <= f(s,extraction-rank)
3 until open = {} repeat

4 extraction-rank ¢« extraction-rank + 1

5 m « extract-node-of-open-according-to-values-fremo-for-the-nodes-in-open

6 itm e T then edit-reverse-path ; stop endif

7 open « open —{m}; closed « closed + {m}

8 for each n son of m repeat

9 freo<— f(n,extraction-rank)

10 it ne open and freq < fremo(n) then update-father&feme endit

11 If ne Closed and fneo< fmemo(n) then update'father&fmemo ,

12 open < open + {n}

13 closed « closed - {n} endit

14 if N closedand n ¢ open then update-father&fyemo ; Open < open + {n} endif
15 endrepeat

16 endrepeat
17 procedure edit-reverse-path : until m = S repeat wtite m ; m « father(m) endrepeat ; write "s"
18 procedure update-father&fmemo @ father(n) <= m; fmemo(n) < freo

Figure 3  Algorithm @ of type 1. The extraction procedure called in line 5 is not yet precisely determined (see
Section 3.4).

3.1.1. Remarks about the generalizationClearly, algorithms A and Aare particular
cases of algorithm@of type 1. It may be easily verified that Pohl's HPA, Harris’A,
Martelli's B, Pearl-Kim’s A;, Ghallab-Allard’s A, Bagchi-Mahanti’s C, Pearl’s BFKorf’s
IDA* and Koll-Kaindl's SDW are als® of type 1.

Algorithms ¢ of type 1 do not refer to any cost of arc or path: they may be applied to
graphs whose arcs are not valued. We shall further propose formulas of sub-admissibility
for some algorithmst of type 1 that exploit particular evaluation functions.

We shall also present other algorithms call®:df type 2 and® of type 3, whose codes
explicitly refer to costs of arcs and paths. Before, we propose a broadened definition for the
lengthof paths.

3.2. Generalization of the notion of path length

Commonly the length of a path is calculated as the sum of the costs of its arcs (this length
is denoted byC,qq see column 3 of figure 2). However, (Pearl, 1984) looks at other path
lengths, especially the maximal cost of the arcs defining the path: (Yager, 1986; Dubois,
Lang, and Prade, 1987) calculate the path length as the minimum of the arc costs; (Gonella,
1989) aggregates the arc costs by multiplication. Hereafter we propose a general definition
for the lengths of paths.

In essence, the operatiop and the seR =]—o0, +00[, involved in the definition of
the classical lengtif,q4q, can be respectively replaced by any two place operadiand
any subsetV of R, provided thatV and ® forms a monoid? We denotec a function
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which associates to each ar@ cost qu) in V. We calllength associated to the monoid
(V,®) and to the function ahe function’ that respects the following rules: 1) for any arc
u: L(u) = c(u), 2) L (empty sequence of arcs) e,, identity element of {,®), 3) for any
sequences of are® andS”, L (concatenation of’ andS”) = ®(L(S"), L(S")).

3.2.1. Remarks about the generalizationTakingV = R or R* or Q (rational numbers)
orQ™ orZ (relative numbers), d¥ (integer numbers), ar@l = +, we recognize the current
forms of the lengthC 44 With some subsef¥ of R, we may choos®(x,y) = X -y or
min(x, y) or max, y) or /X2 + y2, etc. (for other examples: (Farreny, 1995)). We shall
prove in Sections 4 and 5 that our generalization is compatible with interesting properties
related to the completeness and the admissibility.

Now, we can define, for any nodg a generalized standard termy(n) substituting
operation® to + in the previous definitiongy (n) will be the lengthL(C) of the shorter
pathC from s to n known after thexth extraction; ifn is fixed, g« (n) decreases in the wide
sense whex increases. The minimal path length franto n, if it exists, is still denoted
g*(n); the minimal path length from to T, if it exists, is also denotel* (n).

3.3. Other types of updating—algorithn®sof type 2 or 3

Now, we distinguish two types of updating mechanisms that depend on the generalized
standard terngx. We shall speak of algorithm@ of type2 if and only if:

at the time of the expansion of any node m and for any son n of m,

1) fmemo(N) receives f(n,extraction-rank) except if the fmemo(n) value was
already smaller and

2) father(n) receives m except if the value of gmemo(n) is not lowered when m
is expanded.

We shall speak of algorithme of type3 if and only if:

at the time of the expansion of any node m and for any son n of m,

1) fmemo(N) receives f(n,extraction-rank)
except if the value of gmemo(n) is not lowered when m is expanded and

2) father(n) receives m except if the value of gmemo(n) is not lowered when m
is expanded.

3.3.1. Remarks about the generalizationColumn 8 of figure 2 indicates the updating
type of the particular algorithms to which we refer from the beginning. Nilsson’s A &nd A
algorithms are simultaneously of types 1, 2 and 3, because for anynthabestaticity of the
heuristic term (function) leads fmemo(N) andgmemo(N) to be lowered at the same time.
For the same reason, it may be easily verified that Pohl's HPA, Harris’A, Martelli’s B, Pearl-
Kim's A%, Ghallab-Allard’s A , Bagchi-Mahanti’s C, Korf’s IDA and Koll-Kaindl's SDW

are simultaneously of types 1, 2 and 3. Pearl's BFa particular algorithn® of type 1.
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Pohl's extended A, Mero’s BMahanti-Ray’s D and Dechter-Pearl’$*are particular of

type 3. We have not met, in the literature of the field, any particular algorithm that is purely
of type 2. However, when the updating type is 2, the interesting propetiprabgeneity
(defined just below) is satisfied. So, one may suppose that particular algorithms of type 2
will be proposed sooner or later.

3.3.2. Property of homogeneity.For any algorithm®, for any rank of extractiox and

for any appeared nodg, we call pointer path of node n at rank the path froms to n
determined by reversing the sequemgdathein), father(fathefn)), ..., s. We denote it

Cx.n. For any updating type, we havé(Cy ) > gx(n). For algorithmse of type 2 or 3, it

may be easily verified that’(Cy n) = gx(n). We shall say that thgroperty of homogeneity

is satisfied when for any rank of extraction, for any node already appearead situated

on a path from s to T£(Cx ) = gx(n). Clearly: algorithms® of type 2 or 3 satisfy the
property of homogeneityA priori that is not the case foP’s of type 1; nevertheless,

it may be verified that the specific constraints considered by Pearl imply that algorithm
BF* satisfy the property of homogeneity. The homogeneity property will be exploited for
proving a theorem (Section 5.6) which provides a general relation concerning the lengths
of the solution paths.

3.4. Extraction modes—algorithn®g

Line 4 in figure 1 (Nilsson’s A) orders best-first extractiorthat is described in line 21.
Many other Heuristic Search algorithms use the same extraction mode. The best-first ex-
traction has an intuitive motivation when the algorithms use the evaluations givg# by

in order to guide the search; indeed, for any nodg, (n) may be interpreted as an estimate

of g*(n) andh(n) may be interpreted as an estimatehdtn); so g«(n) + h(n) may be
interpreted as an estimategif(n) + h*(n), that is to say: the length of a shortest path from
sto T passing byn; finally, the minimal value ofix(n) + h(n), for anyn in open may be
interpreted as an estimate of the length of a shortest pathdtorn; which leads to respect

the best-first constraintextractn of opensuch asfnemd i) = qe’“(')'r‘)en fmemd(q). However,
according to the application context, it may seem not pertinent to ctivmsky by virtue of

this formula; (Ghallab, 1982; Ghallab and Allard, 1982, 1983; Pearl and Kim, 1982; Pearl,
1984) have proposed to relax thest-firstconstraint: given a positive numbgrit may be
extracted seeing thefiemd) < (1+¢) - Em;?)en fmemd(@); this extraction mode allows to
use a secondary criterion, depending on the application, in order to complete the choice of
n. Hereafter we propose a generalization of the previous extraction modes. We shall see that
this generalization is also compatible with interesting properties concerning the lengths of

the solution paths. Beforehand we have to introduce the notiorarpassed function

3.4.1. Overpassed functionsLet a functionf |[x e D ¢ R — f(x) € R. We shall say
thatf is overpassed on When:vx € D, 3y € D, f(x) <. Likewise, we shall say that
set S is overpassed by a set When:vx € §,3y e S, x <.
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3.4.2. E-extraction. Consider a particular application of an algorithPn Suppose that
there exists a functio@ widely increasing and overpassed B, such as during this
application, for any rank of extractiora,emc',';en fnemd @) < &( E”‘c',';en fnemd(d)). This con-
dition may be satisfied, for instance, Mk € W, x < £(x). Suppose that the algorithm
extracts always an of opensuch asfmemd) < £(, 57 fmemd@)). We shall say that
the algorithm @ usesg-extractionand it will be then denoted b®c. We may distinguish
algorithms @, whose updating type is 1, 2 or 3.

Remarks about the generalizatiohhe best-first extraction is a particular casefof
extraction: take& equal to the identity functio?. Many known algorithms (see column 7
of figure 2) use the best-first extraction too: HPA, A of Harris, extended A of Pohl, SDW,
BF* (note: in BF, BF means Best-First),'BD and A* - A* and A use another simple form
of £-extraction!! take€ = (1 + ¢) - J. It may be verified that algorithms B, C, IDAise

other particular (and less evident, see justification in Farreny (1997c)) forfaexifaction.

3.5. AlgorithmsA

In order to define this sub-family of algorithresve suppose that a lengthis available;
thus there exists a monoi® (®) such that® is the operation used b§ and any arc of
the state graphs is valued by a number take¥.iAn algorithmA is a® whose evaluation
function satisfies the following constraint: for any rank of extractorior any sonn of
the node extracted at rank f,(n) = ©(gx(n), hy(n)), wheregx(n) is the standard term
defined in Section 2.1, whille,(n) is a value ofV (calledheuristic term).

For anyx and anyn, hy(n) may always bénterpreted(well knowing or not, according
to the context), aan estimatef the length of a minimal path, if any, fromto T. Note:
if the monoid {V, ©®) is a group, an¥ may be seen as an algorithi it is sufficient to
takehy(n) = ©(g;(n), fx(n)) whereg,(n) is the inverse ofy; (n) in the monoid ¥, B);
if (V, ©) is not a group we may define sorie that are not algorithma: thenA'’s form a
propersubset of the set made by téis.

Remarks about the generalizatidtilsson’s A is a particulaA that uses a static heuristic
term2 It may be easily verified that the following algorithms are particAl&wo: extended
Aof Pohl, B, C, A, A, B', D, SDW. At first sight, the evaluation functions of algorithms
BF* and A* have not the form required fdk; but BF* and A* are defined on the monoid
(R*, +) and use evaluation functiorfssuch asf > g; thus, the evaluation functiohmay
be formulated as a sug+ h (with h > 0) and so we can conclude that B&nd A* are
particular algorithmsA. Algorithm HPA behaves as ah, because its evaluation function
is proportionalto the evaluation function of aA. It may be verified that algorithm IDA
behaves as ah during each iteration

Clearly, we may distinguish algorithrdswhose updating type is 1, 2 or 3.

3.6. Worth-considering constraints for h or f

We propose to relax the constraints commonly required for the evaluation funictoon
for the heuristic functiorh. In this less constrained context we shall prove general results
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concerning the completeness and the admissibility or sub-admissibility; so, it will be pos-
sible to use a larger variety of functiorfsor h and thus the field of applications will be
potentially extended. Still we denote Bythe domain of the arc values (a lendtlis defined

onV, the range oh is included inV), by W the range off and byG the state graph dealt
with. Given a Heuristic Search algorithaand a state grap8, we denote by5(a, G) the

set of the nodes such that: 11*(n) is defined and 2 is evaluated during the application
ofato G.

3.6.1. Covered h or f. We say that the heuristic functidnof an algorithmA is covered
by F when the algorithm is applied to,@ and only if: 1) there exists a functiof whose
domain isS(A, G), whose range i¥ and 2) for any noda of S(A, G), if nis evaluated
at rankx thenhy(n) < F(n).

Remarks about the generalizatiohhe preceding constraint widely extends the basic
constraint respected by Nilsson'$ And many successotsn) < h*(n) (in this particular
case we said that tisgaticheuristic term wakwer-boundingradmissiblesee Section 2.2).

We can immediately propose several general examples of covered heuristic functions:
1) theh’s that are upper-bounded (i.&M € V, for any noden evaluated at any rank:
hy(n) < M), 2) theh’s that aresemi-statidi.e., for any evaluated node hy(n) is allowed
to take only a finite number of distinct values), 3) this that are simplystatic (i.e., for
any evaluated node, for anyi and j ranks for whichn is evaluatedh;(n) = h;(n)),

4) the h's that satisfy relations such as: for any nadevaluated at any rank, hy(n) <
(1+ o) - h*(n) + H, where the constants and H are positive or zero (but noteis not
necessarily static).

Now, algorithms A, HPA, B, C, A, A, IDA* and SDW use static (thus covered) heuristic
functions (see column 5 in figure 2); moreover, #atisfy a relation of the fornn <
(1+ @) - h*, while Harris’A satisfies a relation of the form< H. It may be verified that
the extended A of Pohl, which has introduced thy@amic weightinguses a semi static
(thus coveredh and that Band D use other particular forms of covelgsl.

We say that the evaluation functidnof a € is covered by F when the algorithm is applied
to G, if and only if: 1) there exists a functioR whose domain iS(°, G), whose range is
V and 2) for any node of S(€, G), if nis evaluated at rank then fy(n) < F(n).

Remark about the generalizatioih may be verified that X use a covered .

We denoteA " an algorithmA that exploits a covereld, Af anAF that useg-extraction,
¢F an algorithm© that exploits a covered, f a ©F that useS-extraction.

3.6.2. Finitely-decreasing h or f. Given a noden, we denote i, (n)]x the sequence of
values taken by the heuristic functibrior the successive ranks of extractiofor whichn
is evaluated. We say that the heuristic functida finitely-decreasing when an algorithA
is applied to Gif and only if: for any evaluated nodeof G, there does not exist any infinite
sub-sequence ohf(n)]x that is strictly decreasing. Likewise, we say that the evaluation
function f isfinitely-decreasing when an algorithis applied to Gif and only if: for this
application, for any evaluated nodeof G, there does not exist any infinite sub-sequence
of [ fx(n)]x that is strictly decreasing.

Remarks about the generalizatidrhefinite-decreasef h or f is a rather soft constraint.
Indeed, it seems often natural that for any nodthe estimatey(n) cannot decrease
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indefinitely. Obviously, all the semi-static functions and therefore all the static functions
are finitely decreasing. It may be easily verified that algorithms A, HPA, extended A of
Pohl, B, A, A, C, B, IDA*, D and SDW use finitely decreasing (most of them use a static
or semi statidh; see Column 5 in figure 2).

3.6.3. Quasi-coincident h. We say that heuristic functidmis quasi-coincident when an
algorithm Ais applied to Gif and only if: Imr € V,aIm't € V, @(my, mt) > €, (&:
identity element), for any evaluated goal nddby (t) > my.

Remarks about the generalizatidhmay be easily verified that A, HPA, extended A of
Pohl, B, A, A,, C, BF, B/, IDA*, D, A**, SDW are quasi-coincidefg indeed, all these
algorithms us&/ = R*, ® = +(e, = 0) and heuristic functiom (implicit in the case of
BF* and A**) that is positive or zero.

3.7. Alarger family of state graphs

We identify now a wide family of state graphs: tBestandardstate graphs. It includes, at
least, all the state graphs considered in the literature related to A, HPA, extended A of Pohl,
B, A%, A,, C, BF, B/, IDA*, D, A** and SDW.

3.7.1. £-uncompressibility. Let £ be the used length. We say that a state graph
is £-uncompressibléf and only if: VM € V, 3k € N, VC elementary® path of G from
s, N() > k= L({C) > M, whereN (C) denotes the number of arcs@fThat is to say:
for any M of V, beyond some number of arcs, the lengtt€’) of any elementary pat
issued frons is greater thamv.

Remarks about the generalizatid@iearly: anys-graph (see Section 2.3)£gg-uncom-
pressible and any finite graph i&uncompressible (whatever 18). All the algorithms
above-mentioned, except fhave been analyzed by their authors in case of application to
3-graphs (see Column 4 in figure 2); Ghallab and Allard have defined and studigdef
it is applied to graphs less constrained tldagraphs, but these graphs are still particular
Lageruncompressible graphs.

3.7.2. L-standard state graphs.We say that a state graphdsstandard if and only if it
satisfies the four following conditions: it is son-finite, it contains at least a goal gt is
uncompressible, it does not contain any absorbant cittiibte: it may be easily verified
that anyL-standard graph owns at least one minimal path (in the sen8efodmsto T.
Remarks about the generalizatiofll the above-mentioned algorithms have been ana-
lyzed by their authors in case of application to particdlastandard graphs.
Within the general framework that we have proposed, it is possible now to establish
various general results related to the completeness (Section 4 below) and to the admissibility
or sub-admissibility (Section 5).

4. General results about the completeness
Remember thatV designates the range of the evaluation functiondride set of the arc

values. Here are other notations that will be used for expressing some properties of the
algorithms.
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For a particular application of the algorithmtract designates thith node extracted
from open always: extragt = s; in figure 3, extragtis identified by the programming
variablem(lines 5 to 8)ppen designates the sepenat the time to decide tri¢h extraction.

fi(n) designates the value of the evaluation functi@iready assigned to the node n,
available when theth extraction(or ith expansionpeginsi.e., at the time when line 5 is
interpreted in figure 3f; (n) is identified by the programming variabfgemd(n), that does
not explicit the extraction rank But f;(n) designates the value of the evaluation function
f which is calculated for the node n when thi iextraction is realizedin figure 3, the
value f; (n) is identified by the programming variabfegn, extraction-rank) (see line 9).

4.1. Applications with ceiling, circumscribed applications, flattened applications

We say that the application of an algoritteno a state grap® admits aceilingif and only
if: 3M e W, Vi rank of extractionf; (extract) < M. We say that it iszircumscribedf and
onlyif: YM € W, 3k € N, Vi rank of extractionf; (extracf) < M = N *(s, extracf) <k,
where\ *(s, extract) is the minimum of the number of arcs of the paths fretn extract
in G. We say that it iSlattenedf and only if: Vn appeared node @, 3i € N, V| rank of
extraction,j > i = f;(n) > f;(n).

4.2. Input nodes

Let G be a state graph that contains at least one goal and at whihisapplied. It is
easily verified that: at the time of any extractiQon any path o fromsto T, there exists
a node belonging topen whose predecessors along the path belorgased; this node
is called:input of the path for the considered extraction

4.3. Lemma

Any algorithme applied to a state graph that contains at least one goal only can terminate
extracting a goal node.

Proof: LetC be a path frons to T. Vi rank of extractiondn € open: we may consider
the input ofC at ranki. Thus, the algorithm can terminate only executing line 5 of the code,
that is to say: extracting a goal node. O

4.4. General completeness theorem@srof type 1, 2 or 3

Let an algorithm ¢ of typel, 2 or 3 that is applied to aC-standard state graph. If the
algorithm is of typel or 2, in order that the algorithm terminates extracting a goal node, it

is necessary and sufficient that the application 1) admits a ceiling and 2) is circumscribed
and 3) is flattened; if the algorithm is of ty@eit is necessary and sufficient that the
application 1) admits a ceiling and 2) is circumscribed.

Proof: a) Let us prove that conditions 1, 2, 3, are necessary for any type of alg®.ithm
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Let | be the last rank of extraction before the terminatimappeared nodéj = |, Vj
rank of extractionj > i = f;(n) = f;(n); thus the application is flattened.

M = " fi (extrac), M € W (becausef;(extract) e W), Vi rank of extraction, f;
(extract) < M; thus the application admits a ceiling.

VM’ € W, 3k = YN*(s, extrach), k € N, Vi rank of extractionf; (extract) < M’ =
N*(s, extract) < k; thus the application is circumscribed.

b) Let us prove that conditions 1, 2, 3 are sufficient when the algorehsof type 1 or
2, while the conditions 1, 2 are sufficient when the algorites of type 3.

Because the application is circumscrib&t € W, 3k € N, Vi rank of extraction,
fi(extract) <M = N*(s, extracf) < k. Because of the application admits a ceiling:
IM e W, Vi rank of extractionf;(extract) <M. Thus:3k € N, Vi rank of extraction,
extract € £ = {(n| N*(s, n) <k}.

Because the graph is son-finite, it may be easily verified&hatfinite. Thus, in order
that the algorithm does not terminate, it is necessary that ampafe€ may be indefinitely
extracted of open (line 4 in the code of the algorithm, figure 4). Now:

if the algorithm is of type 1 or 2f, (ng) strictly decreases each time timgtis extracted
of open; because the application is flattened, it is impossible to obtain an infinite and strictly
decreasing sequence of valuiggno);

if the algorithm is of type 3gx(no) strictly decreases each time thwtis extracted of
open; because the application is son-finftajncompressible and without absorbant circuit,
it may be easily verified thaf (ng) only takes a finite number of distinct values whenins;
thus it is impossible to obtain an infinite and strictly decreasing sequence of gglungs.

Thus the algorithm terminates. According to Lemma 4.3: extracting a goal nodé&J

4.5. Infra strictly increasing functions

We shall say that a functioh defined fromD c R to R is infra strictly increasingon D if
andonly ifyx € D,3x' e D,Vy e D,y > X' = f(y) > f(X).

4.6. Overpassing functions

Letafunctionf |[x e D c R — f(x) € R. We shall say that is overpassing on [if and
onlyif: ¥x € D,3y € D, x < f(y).

4.7. Sufficient conditions of Completenessp@ts oftype1,2o0r3

Letan algorithm@(sF oftypel, 2,or 3,thatis applied to &-standard state graph G. Suppose
that W is overpassed by (see Section 3.4). Suppose that there exidisnction that is
overpassing and infra strictly increasing &h Suppose that for any n evaluated node of
G: fx(n) = ¢(g*(n)). If the algorithm is of typd or 2and if f is finitely decreasing for the
considered application to G, then the algorithm terminates extracting a goaffdtithe
algorithm is of type8, without other condition, then it terminates extracting a goal node.

Proof: a) Becauses is son-finite,£-uncompressible and without absorbant circuits, it
may be easily verified that*(n) is defined for any node of G, that is to say: there exists
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a minimal path froms to n and, even: there exists afementaryminimal path froms
to n; let us call itC,: g*(n) = L(Cy); by hypothesis, for any evaluated nodeve have:
fu(N) = 9(L(Cn)).

b) Let us prove that: iff is finitely decreasing for the considered application then this
application is flattened. Elsé@n appeared node db, Vi € N, 3k rank of extraction for
which n est evaluated again, witk: > i and fy(n) < fj(n). Thus, fori = 1, 3k1 rank of
extraction for whichn is evaluated again, witkl > 1 et fi1(n) < f1(n); fori = k1, 3k2
rank of extraction for whictn is evaluated again, wittk2 > k1 and fo(n) < fi(n);
and so on; the algorithm will calculate afinite sequencef successive evaluation values
fk(n): fo(n), fra(n), fra(n), ... (with: 1 < k1 < k2 < .. .) that are strictly decreasing thus
distinct This is contradictory with the definition of an evaluation function that is finitely
decreasing for the considered application.

¢) Becausés contains at least one goal; path fromsto T. Becauseés is £-standard,
it may be easily verified that¥n € C, h*(n) is defined. Because we consider an algorithm
6F, f is locally upper-bounded o alongC, for the considered application, thiEv’ e
W, Vn evaluated node daf, fx(n) < M’. By definition, extraction functio# is overpassed
onW, thus:aM € W, £ (M’) < M. Becauses contains at least one goal, according to
Lemma 4.3Vi rank of extractionde e C N open.

Now, by definition of: f; (extract) < &£( Em;;mfi @)).

Becaus€ is increasingf; (extract) < 5(} (8)). Let j be the rank of extractiorj, < i,
forwhich valuef; (&) has been assigneddo fj(e) = fi().Becauseg € C, fj(g) < M’
thus fi(g) < M’. Becaus€ is increasing:f;(extracf) < £(M’), thus: f;(extracf) < M.
RecapitulatedM e W, Vi rank of extraction,f;(extracf) < M, thus: the application
admits a ceiling.

d)LetV; =WnNVandV, =W — V-Woverpassed by < Vx € V,,3dy € V, X < y. Be-
causep isoverpassingoW : YM € V:3x € Vsuchag(x) > M. Because isinfra strictly
increasingofV : X' e V,x' > x,Vy e V,y > X' = ¢(y) > ¢(X) > M. Becaus& is L-
uncompressiblerM’ € V, especially foM’ = x’, 3k e N, VC’ elementary path issued from
s: N(C) > k= L(C) > x'.Byhypothesis, for any evaluataénd for any rank, fy(n) >
(L(Cn)), thus:Vi rank of extraction f; (extract) < M = ¢(L(Cy)) < M, in this case,
necessarilyL(Cn) < X/, else, becausé(C,) € V we shallhaveL(C,) > X' = ¢(L(Cpn)) >
M. Let us takeC’ = Cn. L(Cn) < X' = N (Cn) < k = N*(s, extract) < k. Recapitulate:
VM € V, 3k € N, Vi rank of extraction f;(extract) < M = N*(s, extract) < k. This
proposition is namely verified foYyM € V;. Moreover,YM € V,, IM' €V, M < M/;
for M’, 3k e N, Vi rank of extraction f; (extract) < M" = N*(s, extract) < k; because
fi(extract) < M = f;(extract) < M’, we have:f;(extract) < M = (s, extract) < k.
Finally:YM € W, 3k € N, Vi rank of extractionf; (extracf) < M = N*(s, extract) <k,
thus the application of algorithr is circumscribed.

e) Thus we may apply Theorem 4.4. O

Remarks about some rediscoveries and generalizatiitsson’s A is a particular case
of 95 of type 1, 2, 3:F is h* and£ is the identity function7. The reference monoid is
(R*, +) thus the reference length4sqq Nilsson consider son-finit&graphs that contain
at least one goal, that is to say particuljfrstandard state graphs. Heuristic tennis
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positive. Takingl! =V = R*, ¢ = 7 (identity function) we may apply Theorem 4.7: A
terminates finding a path frosito T.

Let us note that Theorem 4.7 may be invoked in very more general contexts; for instance,
if we relax A, using anon staticheuristic termh but keeping the type 3 (and alsb: =
g+h,0 < h < h* ¢ =.7), then we obtain al which necessarily terminates finding a
path fromsto T.

Likewise, general Theorems 4.4 and 4.7 ma¥’lapplied to rediscover and extend the
results about the completeness concerning the following algorithms: HPA, extended A of
Pohl, B, A, A.’s, C's, BF’s, Mero’s B algorithms, IDA’s, D’'s, A**’s and SDW's.

5. General results to approach the sub-admissibility

The six original properties presented below form a set of tools to establish formulas of sub-
admissibility. Statements 5.4, 5.5 and 5.6 directly provide formulas of sub-admissibility;
Statements 5.4 and 5.6 presuppose the termination of the considered algorithms while the
termination is a part of the conclusion in Statement 5.5.

5.1 Lemma forA"’s of type 1, 2 or 3

Let G be a state graph at which is applied @nof typel, 2 or 3 whose heuristic term
h is covered by Rthus the algorithm is arAF). LetC be a path of G from s to T such
as Vi rank of extraction, g-1(e) = L(Cs) and h*(e) is defined where ¢ is the input
of C at the time to decide the ith extraction adg is the part ofC from s to . Then:
fi(e) < ©(L(Cy), F(&)) wherefi(e) is the evaluation value fastened toa& the ith
extraction.

This result generalizéssmma 3. proposed by Nilssdf (1971) (alsoResult by Nilsson
(1980) and_emma lof Pearl (1984)).

Proof: By hypothesis, at the time to decide ittle extraction, we havg _1(g) = L(Cg).

Let j, j <i, the rank of the extraction which orderg;j(e) < L(Cq); at the time of
this same extraction, the algorithm has also evaludtgd) = ©(gj(e), hj(g)) =
O(L(Cq), hj(&)). If the algorithm is of type 3, taking into account that the last update
of g«(g), before the rank, has been realized at rank = |, it is also at rankj that
has been realized the last updatefofe ), thus: fi(e) = ®(L(Cq), hj(&)); if the algo-
rithm is of type 1 or 2, for any rank greater thanj we must havef,(g) < f;(e) thus
fi(6) =O(L(Cq), hj(&)).Becauskd* (g ) isdefinedF (g ) is also defined anld; (§) < F ().
Because® is increasing in the right plac@ (L(Cq ), hj(&)) < ©(L(Cq), F(&)). Thus:
fie) = O(L(Cq), F(a)). U

5.2. Lemma fof's of type 3
Let G be a state graph without absorbant circuit. Suppose @hét strictly increasing in

the left placé’. Let an algorithm® of type3 applied to G. Let n be any node of G. I(ebe
any minimal path from s to n. Denafe= ny, ..., n; where p = s and R = n.Vi rank of
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extraction if n ¢ closed let n(k € N, 0 < k < t) the input ofC at the time to decide the
ith extraction. Then¥j e N,0 < j <k = gi_1(nj) = g*(n;).
This result generalizes theemma 2oroposed by Pedr (1984).

Proof: BecauseG does not admit absorbant circuit, we hage:1(ng) = €,; now:
g*(ng) = e, thus:gi_1(Nng) = g*(no). If k = 0 then the proposition is verified. Else,
we shall execute a recurrence alaghguppose thaliqg e N,0<q <k,Vj eN,0<j <

g = gi-1(nj) = g*(nj).

By definition of inputny: ng € closed. Suppose that, at the time to decidé thextrac-
tion, ng has been put iclosedfor the last time when theth extraction has been executed
(thus:p <i). Note:ng is the extracted node at the time of tifth extraction, thug(ng)
may be lowered only ifi is son of itself; but, becaugg does not admit absorbant circuit:
gp(nq) = gp—l(nq)- Then:gp—l(nq) = g*(nq) e|59:gp—1(nq) > g*(nq) (becausgp—l(nq)
measures the length of a path frao nq) and, in order to lowep, (ng) from gp_1(Ng)
to gi—1(ng) = g*(ng), it is necessary thai, leavesclosed(because the type of the al-
gorithm is 3) and goes back tlosedafter thepth extraction, contrarily to the preceding
hypothesis.

At the time of thepth extraction, the sonq 1 of nq has been considered, thus:
gp(Ng+1) < O(Gp-1(Ng), C(Ng, Ng+1)) = O(g*(Ng), C(Ng, Ng+1)). Because — 1 > p, we
have:gi_1(Ng+1) < ©(g*(ng), c(Ng, Ng+1)). LetCy be the elementary sub-path©from
s to ng. Becaus@*(ng) < L(Cy) (by definition ofg*) and becaus® is increasing in the
left place:gi—1(Ng+1) < O(L(Cy), c(Ng, Ng41)) = L(Cq1)-

Because” is minimal froms to n and becaus® is strictly increasing in the left place,
it may be easily verified that2(Cgq+1) = 9*(Ng+1). Thus:gi—1(Ng+1) < 9*(Ng+1).

Moreover, becausg_1(ng+1) measures the length of a path freno Ny, 1: gi—1(Ng+1) >
g*(Ng+1). Finally: gi—1(Ng41) = g*(Ng41).

We may iterate, whilg < k. So we obtaing; _1(ny) = g*(ny). O

5.3. Corollary for AF’s of type 3

Let G be a state graph without absorbant circuit. Suppose @hat strictly increasing in
the left place. Le€ be any minimal path of G from s to T. Suppose thataaf type3 is
applied to G, whose heuristic term h is covered bgttitis theA is an AF). Then,Vi rank
of extraction:f;(g) < ©(g*(e), F(&)) where ¢is the input oC at the time to decide the
ith extraction whilef; (g ) is the evaluation value fastened toat this precise moment.

This result, derived fromthe general Lemma 5.2, yet widely inclu@éesma 3. proposed
by Nilsson (1971).

Proof: LetC =ng,...,npwiths=ngandn; € T;letnk(k € N, 0 < k < t) the input of

C at the time to decide theh extraction. Becauggis minimal froms to n and becaus®

is strictly increasing in the left place, it may be easily verified that the length of the part of
C from s to ny is minimal betweers andny: it definesg*(ny), while the length of the part

of C fromny to T is minimal betweem, andT : it definesh*(ny).
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According to Lemma 5.2, at the time to decide ke extraction, we haveg_1(ny) =
g*(ny). Let j, j < i, the rank of the extraction that ordeg:(ny) < g*(ny); at the time
of the same extraction, the algorithm has also evaludjeds) = ©(g;(ny), hj(ny)) =
O(g*(Nk), hj(ny)).

Because the algorithm is of type 3, because the last updajg(mf) before rank has
been executed at rank= j, we conclude that the last updatefiny) has been executed
atrankj, thus: f; (ny) = ©(g*(nK), hj (NK)).

Now, there exists a functioR taking its values ofV/, such as: for any evaluated node
for which h*(n) is definedhy(n) < F(n). Here:h*(ny) is defined, thush;(ny) < F(ny).
And, becaus® is increasing in the right plac@ (g*(ny), hj(nk)) < O(g*(NK), F (n)).
Thus: fi (k) < ©(g*(NK), F(Nk)). U

5.4. Theorem of extraction in case of termination,ﬁ(‘fl’s of type 3

Let G be a state graph without absorbant circuit and that contains at least one goal. Let an
algorithmA¢ of type3 applied to G, which terminates. Suppose thalten the algorithm

is applied h is covered by Rthus the algorithm is arA}) and quasi-coincidengthus:

dmy € V,dmT € V, O(mr, mt) > e,). Suppose thab is strictly increasing in the left
place. Thenat the time of terminationthe algorithm has found a pathfrom s to T such

as: L(C) < ©(&EO@*e), F(g))), mt), where ¢ is the input when is decided the ith
and last extraction, of any minimal path fromsto T in G.

Proof: According to Lemma 4.3, at the time of the termination, the algorithm extracts a
goalt. Whatever the type of the algorith@k € N, k < i, fi(t) = fi(t) = O(g(t), hk(1)).
According the definition off: gk(t) > gi_1(t). Becausdy is quasi-coincidenti (t) > mr.
Becaus® is increasing in the left and right places(extract) = f; (t) > ©(gi_1(t), mr).

Thus: ©(fi(extract), mt) > ©(O(gi-1(t), mr), M) = O(gi-1(t), O(My, mT)) >
O(gi-1(), &) = gi—a1(b).

Let C be the pointer path df at ranki. For any algorithm® of type 2 ou 3, it may be
easily verified thatL(C) = gi_1(1); thus:£(C) < ©(f;(extract), mT).

According to Corollary 5.3: at the time to execute tkieextraction, the inpug of C is
in open and: fi (&) < ®(g*(e), F(&)). According to the definition of th€-extraction:

fi(extract) < & ( min f; (n)).
- nefront ~
Becaus¢€ isincreasing oV and because € open, we havef; (extract) < £(©(g*(e),

F(e))).
Thus:L(C) < ©(£(O(g*(e), F(e))), mT). o

In the following theorem, the termination of the algorithm is not an hypothesis but a
conclusion.
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5.5. Theorem of sub-admissibility fé:?’s of type 3 when h is covered, quasi-coincident
and lower-bounded

Let G be al-standard state graph at which is applied an algorittn of type3, whose
heuristic function h is covered by F during the applicati@hus the algorithm is arf\?)
quasi-coincidentthus:amy € V, Imt € V, ®©(my, mt) > e,) and lower-bounded by an
element m o such aggm’ € V, ®(m’, m) > e,. Suppose tha® is strictly increasing in
the left place. Thenthe algorithm terminates finding a pathof G from s to T such as:
L(C) < BB (e), F(e))), m7), where ¢ is the input at the time to decide the ith
and last extractionof any minimal path from sto T in G.

This result generalizes Theorem 3.1 proposed by Nis(i971) (also: Result 4 in
Nilsson (1980) and Theorem 2 in Pearl (1984)).

Proof: a) Because the evaluation function has the foffig(n) = ©(gx(n), hx(n)), it
takes its values itv; thusW c V; thusW is overpassed by.

Because® is increasing in the right placdy (n) > ®(gy(n), m). Let ¢ be the function
elyeV — o(y) =0(y,m) e V. Thus: fy(n) > ¢(g«(n)). Becauseay,(n) measures the
length of a path frons to n: ¢ (g« (n)) > ¢(g*(n)), thus: fx(n) > ¢(g*(n)).

Functiong is overpassing oV becauseYx € V, 3y € V such asx < ¢(y); indeed,
takingy = ©(x, m") and knowing thatd is associative and increasing in the right place,
we verify that:p(y) = ©(y, m) = OO, m),m) = O(X, @M, m)) > O(X, &) = X.
Becaused is strictly increasing in the left place, we observe thas strictly increasing
thus infra strictly increasing oW.

So we may apply Theorem 4.7 and conclude that the algorithm terminates immediately
after extracting a goal frorapen

b) Thus we may apply Theorem 5.4 and infer that the algorithm discovers & fatim
sto T suchasC(C) < ©(E(O(g*(e), F(g))), mt), whereg is the input ofC at the time
of the last extractioi. O

In the following lemma, the termination of the algorithm is anew an hypothesis.
5.6. Lemma of the found path, f@’s of type 1, 2 or 3

Let G be a state graph that contains at least one goal. Let an algori®af type2 or
3, that is applied to G and terminates at the time of the ith extraction. Suppose that there
exists a functior2, whose domain is the range; Tof fx(n) when n runs on T such as
for any evaluated goal node @ (t) < Q(fx(t)). Then at the time of the terminatigrihe
algorithm has found a patli from s to T such asC(C) < Q(fj(extract)). This lemma
holds for the algorithms¢ of typel when the property of homogeneity is satisfied.

This result generalizeBheorem 2 proposed by Pedr (1984).

Proof: According to Lemma 4.3, at the time of the termination, the algorithm extracts a
goaltg. Whatever the type of the algorithrak € N, k < i, fj(extract) = fi(to) = fi(to).

LetC be the pointer path df at ranki; we have noted (Section 3.8) that if the algorithm is
of type 2 or 3therC(C) = gi_1(to); this relation holds for the algorithms of type 1 when the
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property of homogeneity paths is satisfied, becagisgreviously appeared and is situated
on a path frons to T. According to the definition of: gi _1(to) < gk(to); by hypothesis:
Ok(to) < Q(fk(to)). Thus:L(C) < Q2(fk(to)) = Q(fi(extract)). a

Remarks about some rediscoveries and generalizatiohilsson’s A" algorithm is also

a particular case O&E of type 3. The state graphs considered by Nilsson contain at least
one goal and do not admit absorbant circuits. The heuristic term is quasi-coincident (take
mr = mt = 0). The operatiom® (that is to say+t), is strictly increasing in the left place.
Thus we may apply Theorem 5ié:case of terminationC,q4(C) < g*(g) + h*(e), where
La4d(C) is the length of the found patfi from s to T, while g is the final input of any
minimal pathCo from sto T24. Because, belongs taZ, (minimal), it may be easily verified
that:g*(e) + h*(§) = Laqd(Co). ThusL44q(C) = h*(s): in case of terminatiothe found

path is minimal. Really, we may right away apply Theorem 5.5, which moreover assures the
termination (also proved in Section 4.8, applying Theorem 4.7): the admissibility’sf A

is thus rediscovered.

The admissibility may be still proved when some constraints applied to Nilsson's A
algorithm are relaxed; indeed, providing that the updating type remains type 3, Theorem 5.5
is yet applicable to monoid§/( ®) other than grougR*, +), to state graphs that are not
necessarilg-graphs, to heuristic ternithat are not necessarily static or positive. Moreover,
Theorem 5.5 gives some formulas of sub-admissibility for extraction modes which may
be not best-first and fdn, which may be not lower-bounding. If we relax Nilsson’s A
algorithms toward#’s of type 1 or 2, we can establish some formulas of sub-admissibility
by combining the Result 4.7 (possibly 4.4) with Result 5.6.

Likewise, Theorems 5.1-5.6 may®applied to rediscover and extend the known results
about the admissibility or the sub-admissibility concerning the HPA's, extended A's of Pohl,
B’s, Al's, A.’s, C's, BF’s, Mero’s B algorithms, IDA’s, D’'s, A**’s and SDW's.

6. Concluding remarks and perspectives

We have proposed a formalization that generalizes diverse works concerning the
Heuristically-Ordered Search in state graphs. We have considered 5 dimensions: 1) the
notion of length to measure the paths between nodes, 2) the characteristics of the state
graphs dealt with, 3) the choices of the nodes to expand, 4) the kinds of updating to rea-
lize, 5) the properties of the evaluation functions that guide the search. We have employed
this formalization to present several general theorems about the completeness and about the
admissibility/sub-admissibility. This formalization and the derived results allow a compar-
ative presentation of the algorithms; they facilitate a better understanding of the key points
and limitations, so as the revelation of non exploited potentialities.

This work may be developed to tackle the problems of completeness, admissibility or
sub-admissibility for other variants of algorithms or perhaps other variants of evaluation
functions, or even other variants of state graphs, beyond the hypotheses here considered.
So we may be concerned with real-time algorithms such as R@rf, 1988b, 1990), with
restricted-memory algorithms such as MREC (Sen and Bagchi, 1989),(Mihakrabarti
et al., 1989), SMA (Russell, 1992), RFBS (Korf, 1992, 1993) or with algorithms for
dynamic environnements such a$ [btentz, 1995). We may also try to rediscover and
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extend the sub-admissibility results relative to the bidirectional algorithms (see (Farreny,
1995), chapter 8, for preliminary work). The generalizing formalization that we have only
applied here to the properties of completeness, admissibility and sub-admissibility may
be also contribute to better apprehesttier propertiesknowingly ignored in this paper;

for instance: such algorithm always finds a better solution than such other, such algorithm
presents such kind of complexity in time or space, etc.

Notes

. The definitions of the completeness, the admissibility and the sub-admissibility are recalled in Section 2.

. Itis not possible to recall here the definitions of these algorithms.

. The notation A (Nilsson, 1971) is considered further.

. The number of sons of any node is finite. Some authors say that the gtapalig finite

. For Nilsson, the length of a pathis the sum of the arc costs 6f We denote it:L;44(C).

. We use here the adjectidggnamicwith the meaning introduced by Pohl (1973). Mero (1984) then Mahanti
and Ray (1988) use the adjectimdifiable Kainz, Kaindl and Kl (1992, 1996) useélynamicwith a more
restrictive meaning than Pohl and us.

7. Other authors (Pohl, 1977; Pearl, 1984; Korf, 1985; Mahanti and Ray, 1988) sdyisredmissiblerather
than lower-bounding.

8. Gelperin (1977) gives a particular condition for guaranteeing admissibility efifen the state graphs contain
non-positive arc costs. We do not know another work dealing with this problem.

9. Nevertheless the interest of other forms of length is suggested by Schoppers (1983) and Pearl (1984) and
illustrated by Yager (1986), Farreny (1996c) and Gonella (1989).

10. Vis closed unde®, © is associative and admits an identity elemeri¥inVe denote(V,®).

11. This particular form of-extraction is also considered by Davis (1988).

12. Note: the tilde on A reminds treepriori non staticity ofh.

13. Several authors consider a stéttisuch that: for any goal stateh(t) = 0O; this property is sometimes called
coincidence

14. Length relative to some monoitl(®); the arc valuations are taken‘ih(see Section 3.1).

15. Thatis to say: without repeating any state.

16. Absorbant circuit: whose length e, (ey: identity element of the considered monoid).

17. Becausd > ¢(g"), if Vn state3s, > O, Vi and] ranks of extractionf; (n) — f;(n) | > 8, then itis assured
that f is finitely decreasing. This case appears for instance \iteny may take decimal values with at most
p figures after the point (particular case: integer values).

18. We don't give the details by lack of place.

19. Statement ofemma 3.1of Nilsson (1971)if h(n) < h(n) for all n, then at any time before*Aerminates
and for any optimal path P from node s to goal, there exists an open riagemwith fn) < f(s).

20. Forinstance, this property is true ¥f,(®) is a group rather than a simple monoid.

21. Statement dfemma 2f Pearl (1984)Let il be the shallowest OPEN node on an optimal path Pto any
arbitrary node rf, not necessarily i". Then: gn’) = g*(n’), stating that A has already found the optimal
pointer-path to f(i.e., ' is along R ) and that path will remain unaltered throughout the search

22. Statement of Theorem 3.1 in Nilsson (1971ji(n) < h(n) for all nodes n, and if all arc costs are greater
than some small positive numbgrthen algorithm A is admissible

23. BF* is ¢ ~1(M)-admissible, that is, the cost of the solution path found by Bt mosty —1(M).

24. For anyL-standard graph, there exists a minimal path o T.

25. We don't give the details by lack of place.
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