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Abstract

We propose a formal generalization for various works dealing with Heuristic Search in State Graphs. This gen-
eralization focuses on the properties of the evaluation functions, on the characteristics of the state graphs, on the
notion of path length, on the procedures that control the node expansions, on the rules that govern the update
operations. Consequently, we present the algorithm familyand the sub-familỹA, which include Nilsson’s A
or A∗ and many of their successors such as HPA, B, A∗

ε , Aε , C, BF∗, B′, IDA∗, D, A∗∗, SDW. We prove general
theorems about the completeness and the sub-admissibility that widely extend the previous results and provide a
theoretical support for using diverse kinds of Heuristic Search algorithms in enlarged contexts, specially when the
state graphs and the evaluation functions are less constrained than ordinarily.
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1. Introduction

This paper is a part of a study (Farreny, 1995, 1996a,b,c, 1997a,b,c) that aims to compare
and to extend various works dealing with Heuristic Search in State Graphs. Our main goal
here is to present the proofs of general results concerning two basic properties: 1) the
completeness and 2) the admissibility or sub-admissibility.

1.1. Position of this paper and contribution

Heuristic Search algorithms are studied from about thirty years; Steward, Liaw, and White
(1994) list one thousand papers concerning this topic; among them, several hundreds refer
to Heuristic Search in State Graphs. What do we propose here? We do not propose another
particular algorithm but an unifying and generalizing point of view. We formally characterize
some wide families of algorithms that arecompleteoradmissibleorsub-admissible.1 These
families include, for instance, the algorithms A and A∗ (Hart, Nilsson, and Raphael, 1968;
Nilsson, 1971, 1980) and diverse successor algorithms2 such as HPA (Pohl, 1969, 1970,
1977), another extended form of A (Pohl, 1973), a specific form of A (Harris, 1973, 1974),
B (Martelli, 1977), A∗ε (Pearl and Kim, 1982, 1984), Aε (Ghallab, 1982; Ghallab and Allard,
1982, 1983), C (Bagchi and Mahanti, 1983, 1985), BF∗ (Pearl, 1984; Dechter and Pearl,
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1985, 1988), B′ (Mero, 1984), IDA∗ (Korf, 1985a,b, 1988), D (Mahanti and Ray, 1988), A∗∗

(Dechter and Pearl, 1985, 1988) and SDW (K¨oll and Kaindl, 1992). We do not evoke here an
application or an experimentation but we present original results concerning some general
families of Heuristic Search algorithms. Obviously, applications and experimentations are
a very important topic. The papers that describe actual applications of Heuristic Search
in State Graphs to concrete domains (such as robotics, natural language understanding,
pattern recognition, etc.) are relatively few; the papers that present experimentations with
symbolic problems are far more numerous; most of them cope with the Travelling Salesman
Problem or with then-puzzle (generallyn = 8 or 15, seldomn = 24 or more). As teacher
as much as researcher we are very interested in this kind of works. Nevertheless, in the
present paper the contribution is exclusively theoretical. Indeed, we are also very interested
in the exact statements and proofs of the algorithm properties. But, at times, the statements
of the properties of some Heuristic Search algorithms or the statements of their proofs are
incomplete; in some cases they are mistaken; very often the statements of the properties
are over-constrained. In the following, we show that the constraints usually stated for the
Heuristic Search in State Graphs, in order to ensure the completeness or the admissibility
or the sub-admissibility, can be widely relaxed; so, we prove that these properties can
be ensured when working with more general state graphs, or with more general evaluation
functions, or with more general paths lengths or with more general algorithmic mechanisms;
for instance, the arc costs and the heuristic estimates may be not exclusively positive; for
instance yet, the heuristic estimate of any node may be a variable rather than a constant. The
statements and the proofs of the theorems that we present hereunder supply a theoretical
support for applying diverse Heuristic Search algorithms (previously known or not) in
enlarged contexts. Among the works whoseformal motivations have notably stimulated
the present study, let us quote Vanderbrug (1976), Gelperin (1977), Bagchi and Mahanti
(1983), Pearl (1984), Dechter and Pearl (1985), Korf (1988) and Russell (1992).

1.2. Plan

In Section 2 we recall previous results about the completeness and the admissibility of
various Heuristic Search algorithms; then we discern several interesting ways to relax their
definitions and running conditions. In Section 3 we propose a formalization that covers many
known codes and running contexts. In Section 4 we prove general theorems concerning the
termination with discovery of a path from the start node to a goal node. In Section 5 we
prove general theorems concerning the length of the discovered path.

2. Completeness, admissibility and sub-admissibility, previous results and ways
for extensions

First we recall the definitions of Nilsson’s A and A∗ algorithms (Hart, Nilsson, and Raphael,
1968; Nilsson, 1971, 1980). Then we report under which precise conditions it has been
established that these algorithms terminate by discovering a solution possibly optimal.
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Figure 1. Algorithm A of Nilsson.

2.1. Algorithms A

The algorithm described in figure 1 is widely known asalgorithm A(Nilsson, 1980)3. It
searchs a goal node by progressively expliciting the state graph from the start nodes. The
state graph is supposed to beson-finite.4 A cost c(m, n) is associated to each arc (m, n)
which joins a nodem to a noden. The set of the goal nodes is denoted byT (line 5); if
a goal is discovered, the algorithm writes the reversed node list of a path from the start
node to the found goal (lines 17, 18) and terminates (stop in line 5). Possibly, the algorithm
terminates without discovering any goal node (test in line 3), even if such a node exists
in the considered state graph. Possibly, it does not terminate. At the beginning of each
execution of the loop 3–16,openis the set of nodes available for the next step of the search;
the loop is constituted by a nodeextraction(lines 4 to 6) followed by theexpansionof the
extracted node (lines 7 to 15);closedis the set of nodes previously extracted and expanded
that are not available now. The algorithm uses anevaluation function ffor choosing the
node that must be extracted (from open) and then expanded. In the following, outside of
the algorithm codes, we shall denotefx(n) the later value of the evaluation function at the
noden when thexth extraction is about to be executed. Nilsson and many authors write
f (n) rather thanfx(n); but, in order to correct and to complete the previous theoretical
results of Hart, Nilsson, and Raphael (1968, 1972), Gelperin (1977) has proposed to denote
explicitely that the evaluation of any node varies when the algorithm is running. Here, index
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x (we shall say:the rank x) is aimed to recall that the same noden may be successively
evaluated in different ways, according to the successive extractions.

The algorithm extracts fromopenone of the nodes that own the minimal evaluation (lines
4 and 21); this mechanism may be interpreted like this: the more the evaluation of a node is
small, the more we hope that this node leads a path to a goal. The sons of the extracted node
are evaluated (for the first time or afresh); any new son is put inopen; if a son is already in
closedand if its present evaluation is less than its previous evaluation then the node is got
out fromclosedand put inopenagain.

By definition of A (Hart, Nilsson, and Raphael, 1968; Nilsson, 1971, 1980), thefx(n) are
calculated using the following formula:fx(n) = gx(n)+h(n), wheregx(n) is thestandard
termwhile h(n) is theheuristic term.

Thestandard term gx(n) is recursively calculated as the shorter length of a path5 from
s to n known after thexth extraction. Whenn is fixed,gx(n) decreases (not strictly) when
x increases, thus we may considergx(n) as a decreasing overestimate of the minimal path
length, if any, froms to n; this minimum is denotedg∗(n) below. The functiong depends
on two variables: the rankx and the noden; it is called thestandard function. In figure 1,
gmemo(n) keeps track of the minimum of valuesgx(n) calculated until now for noden;
likewise, fmemo(n) memorizes the minimum of valuesfx(n) calculated until now forn;
father(n) records the father node whose expansion led to fix the later valuegmemo(n). So,
any node inopen is the end of a path froms, whose length isgmemo(n) and that only
includes expanded nodes; in addition, any path froms to n whose length is smaller has to
include a node not yet expanded.

Theheuristic term h(n) only depends on noden at whichheuristic function his applied
and not of the extraction rank. For this reason, we say that the heuristic functionh is static
while we say that the standard functiong (and the evaluation functionf ) is dynamic.6

Moreover, Nilsson’s A algorithm (and most of its successors) supposes that the heuristich
is positive. The measure (according to the length function; here:Ladd) of a minimal path, if
any, fromn to the setT of goal nodes, is denotedh∗(n); so,h∗(s) is the length of a minimal
path, if any, from the start node to the set of goals. Commonly,h(n) is considered as an
estimate ofh∗(n).

2.2. Algorithms A*

For Nilsson (1980) and other authors, algorithms A are designated by A∗ when the state
graphG and the heuristic functionh satisfy the relation: for any noden of G, h(n) ≤ h∗(n).
We say thath is a lower-boundingfunction.7

2.3. Completeness and admissibility for A and A∗

An algorithm of Heuristic Search in state graphs is calledcompleteif and only if it is
guaranteed that it terminates finding a path from the start node (s) to the set of goal nodes
when such a path exists. An algorithm is calledadmissibleif and only if it is complete
and the length of the found path ish∗(s). The admissibility of theA∗’s is proved by Hart,
Nilsson, and Raphael (1968), Nilsson (1971, 1980), and Pearl (1984) supposing that, at
once: 1) the state graphG is son-finite and it contains at least one goal, 2)∃δ > 0, ∀(m, n)
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arc ofG, c(m, n) ≥ δ (this property characterizes the so-calledδ-graphs), 3) h ≥ 0. Under
the same conditions any algorithm A is complete.

2.4. Admissibility/sub-admissibility for other algorithms

An algorithm issub-admissibleif it terminates finding a path froms toT whose length isnear
to h∗(s). According to the relations that concretize thenear tonotion, thesub-admissibility
has different meanings. Figure 2 reports previous results concerning the admissibility of
HPA, B, C, IDA∗, A∗∗ and the sub-admissibility of Harris’ A, Pohl’s A, A∗ε , Aε, B′, BF∗,
D; for a while, it is sufficient to consider columns 1 and 9.

2.5. Several interesting ways to relax A∗ and other algorithms

Figure 2 suggests several ways to relax A∗ and various other algorithms,while preserving
diverse forms of sub-admissibility.

2.5.1. Constraints concerning the state graph and the length function.Consider columns
2 to 4. All the mentioned algorithms refer toδ-graphs(possibly infinite) or finite graphs;
note: in the first case, all the costs arestrictlypositive and in the both cases they are positive.8

The length of a solution path is always calculated as thesumof the costs of its arcs.9 We
shall relax these constraints.

2.5.2. Constraints concerning the heuristic function and the evaluation function.Con-
sider columns 5 and 6. Most authors associate admissibility with heuristic functions that
are at once positive, static and lower-bounding. Nevertheless, we remark that B′, A∗∗ and D
algorithms can assure minimal solutions using non-static heuristic functions. We observe
a form of sub-admissibility for Harris’A and for Aε while these algorithms use non-lower-
bounding heuristic functions. We observe also a form of sub-admissibility for Pohl’s ex-
tended A while this algorithm uses a non-static and non-lower-bounding heuristic function.
Moreover, except for BF∗ and A∗∗, the evaluation functionf is always calculated as the
sum (or a linear combination, for HPA) of two functions: the standard functiong used
by Nilsson’s A and a heuristic function (theh of algorithm A or a varianth′). From these
examples, we shall propose a more general point of view because: 1) in some circumstances
(Gelperin, 1977) the arc costs (thus the functionsf, g, h) may be non-positive, 2) it may be
natural to adjust, at least for some nodesn, the quantityh(n) in proportion as the algorithm
is running, 3) it may be easier to know (or more attractive to use) a non-lower-bounding
heuristic function, and 4) it may be pertinent to examine the interest of other forms off
than a linear combination ofg andh or h′.

2.5.3. Constraints concerning the extraction mode.Consider column 7. Most algorithms
executebest-firstextractions: as A∗ does, they systematically extract one of the nodes of
openthat presently minimize the evaluation function. The A∗ε and Aε relax this mechanism.
We shall offer more possibilities; so, the choice of the nodes to expand may be controlled
according to a secondary criterion, as previously suggested by Ghallab and Allard (1982)
and Pearl and Kim (1982).
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Figure 2. Admissibility/sub-admissibility of diverse Heuristic Search algorithms: a survey. Depthx(n) is the
minimal number of arcs froms to n, known at rankx; N is an upperbound for allx andn. Px,n is the pointer path
of noden at rankx (see Section 3.8). The updating types are presented in Sections 3.1 and 3.3, and the extraction
modes in Section 3.4. At rankx, nx is the extracted node andf ∗x the min of fx(n) for all n in open.Fp is the part
of F from s to p. Actually, some results reported in last column were originally established with more restrictive
hypothesis not explicited here (it is the case for Harris’A, BF∗, A∗∗).



COMPLETENESS AND ADMISSIBILITY 359

2.5.4. Constraints concerning the updating type.Consider column 8. An important (and
perhaps undervalued) difference between algorithms lies in the manner to update the values
and the pointers associated to each node. The difference appears if we compare the algo-
rithms that use statich with those that use dynamich: the latter can dissociate the lowerings
of g and f . The difference also appears when an algorithm (for instance: BF∗) does not
exploit theg values: then the pointers are updated if and only if thef values are lowered.
We shall develop this topic in Sections 3.1 and 3.3.

Hereafter we present an unifying and generalizing point of view.

3. Formalizations and generalizations

We present in Section 3.1 a general Heuristically-Ordered Search algorithm, namedof
type1; its code does not refer to arc or path lengths. We propose in Section 3.2 a general
definition of thelengthof a path. In Section 3.3, we introduce algorithmsof type2 and

of type3 whose codes refer to this general length, in two different ways. Until now, we
have not discussed theextraction modeof the algorithms , whatever the type (1, 2 or 3); in
Section 3.4 we propose a new extraction mode namedE-extraction. In Section 3.5, among
algorithms , we distinguish the sub-familỹA. Releasing the contraints relative to the
evaluation functions or to their heuristic components (Section 3.6) and also the constraints
relative to the state graphs (Section 3.7) we access to application contexts larger than usual.
This formalization leads to prove general theorems concerning the completeness (Section 4)
and the admissibility/sub-admissibility (Section 5).

3.1. Algorithms of type 1

We call the code presented in figure 3:algorithm of type1. The reference to the evaluation
function f is only done in the assignment instructions of the lines 2 and 9. Later, we shall
make the algorithm more precise by discussing theextractioninstruction in line 5 and we
shall consider the application circumstances: what kind of evaluation functionsf , what
kind of state graphs, what kind of path lengths in these graphs?

According to the manner to make the line 5 more precise, we may define different
extraction modes(studied in Section 3.4). The lines 8–15 realize theexpansionof the
extracted nodem. Each extracted node that it is not a goal (test in line 6) is immediately
expanded: all its sons are considered (partial expansions are not allowed in this paper).

According to the manner for governing the updating offmemo(n) and father(n), we may
define differenttypesfor algorithms . In algorithm of type1, the update orders comply
with the following rules:

at the time of the expansion of any node m and for any son n of m,
1) fmemo(n) receives f(n,extraction-rank) except if the fmemo(n) value was

already smaller and
2) father(n) receives m except if fmemo(n) is not lowered by the step 1.
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Figure 3. Algorithm of type 1. The extraction procedure called in line 5 is not yet precisely determined (see
Section 3.4).

3.1.1. Remarks about the generalization.Clearly, algorithms A and A∗ are particular
cases of algorithmsof type 1. It may be easily verified that Pohl’s HPA, Harris’A,
Martelli’s B, Pearl-Kim’s A∗ε , Ghallab-Allard’s Aε, Bagchi-Mahanti’s C, Pearl’s BF∗, Korf’s
IDA ∗ and Köll-Kaindl’s SDW are also of type 1.

Algorithms of type 1 do not refer to any cost of arc or path: they may be applied to
graphs whose arcs are not valued. We shall further propose formulas of sub-admissibility
for some algorithms of type 1 that exploit particular evaluation functions.

We shall also present other algorithms calledof type 2 and of type 3, whose codes
explicitly refer to costs of arcs and paths. Before, we propose a broadened definition for the
lengthof paths.

3.2. Generalization of the notion of path length

Commonly the length of a path is calculated as the sum of the costs of its arcs (this length
is denoted byLadd; see column 3 of figure 2). However, (Pearl, 1984) looks at other path
lengths, especially the maximal cost of the arcs defining the path: (Yager, 1986; Dubois,
Lang, and Prade, 1987) calculate the path length as the minimum of the arc costs; (Gonella,
1989) aggregates the arc costs by multiplication. Hereafter we propose a general definition
for the lengths of paths.

In essence, the operation+ and the setR= ]−∞,+∞[, involved in the definition of
the classical lengthLadd, can be respectively replaced by any two place operation2 and
any subsetV of R, provided thatV and2 forms a monoid.10 We denotec a function
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which associates to each arcu a cost c(u) in V. We call length associated to the monoid
(V,2) and to the function c, the functionL that respects the following rules: 1) for any arc
u :L(u) = c(u), 2) L (empty sequence of arcs)= en, identity element of (V,2), 3) for any
sequences of arcsS ′ andS ′′,L (concatenation ofS ′ andS ′′) = 2(L(S ′),L(S ′′)).

3.2.1. Remarks about the generalization.TakingV = R orR+ orQ (rational numbers)
orQ+ orZ (relative numbers), orN (integer numbers), and2 = +, we recognize the current
forms of the lengthLadd. With some subsetsV of R, we may choose2(x, y) = x · y or
min(x, y) or max(x, y) or

√
x2+ y2, etc. (for other examples: (Farreny, 1995)). We shall

prove in Sections 4 and 5 that our generalization is compatible with interesting properties
related to the completeness and the admissibility.

Now, we can define, for any noden, a generalized standard term gx(n) substituting
operation2 to + in the previous definition:gx(n) will be the lengthL(C) of the shorter
pathC from s to n known after thexth extraction; ifn is fixed,gx(n) decreases in the wide
sense whenx increases. The minimal path length froms to n, if it exists, is still denoted
g∗(n); the minimal path length fromn to T , if it exists, is also denotedh∗(n).

3.3. Other types of updating—algorithmsof type 2 or 3

Now, we distinguish two types of updating mechanisms that depend on the generalized
standard termgx. We shall speak of algorithms of type2 if and only if:

at the time of the expansion of any node m and for any son n of m,
1) fmemo(n) receives f(n,extraction-rank) except if the fmemo(n) value was

already smaller and
2) father(n) receives m except if the value of gmemo(n) is not lowered when m

is expanded.

We shall speak of algorithms of type3 if and only if:

at the time of the expansion of any node m and for any son n of m,
1) fmemo(n) receives f(n,extraction-rank)

except if the value of gmemo(n) is not lowered when m is expanded and
2) father(n) receives m except if the value of gmemo(n) is not lowered when m

is expanded.

3.3.1. Remarks about the generalization.Column 8 of figure 2 indicates the updating
type of the particular algorithms to which we refer from the beginning. Nilsson’s A and A∗

algorithms are simultaneously of types 1, 2 and 3, because for any noden, the staticity of the
heuristic term (functionh) leads fmemo(n) andgmemo(n) to be lowered at the same time.
For the same reason, it may be easily verified that Pohl’s HPA, Harris’A, Martelli’s B, Pearl-
Kim’s A ∗ε , Ghallab-Allard’s Aε , Bagchi-Mahanti’s C, Korf’s IDA∗ and Köll-Kaindl’s SDW
are simultaneously of types 1, 2 and 3. Pearl’s BF∗ is a particular algorithm of type 1.
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Pohl’s extended A, Mero’s B′, Mahanti-Ray’s D and Dechter-Pearl’s A∗∗ are particular of
type 3. We have not met, in the literature of the field, any particular algorithm that is purely
of type 2. However, when the updating type is 2, the interesting property ofhomogeneity
(defined just below) is satisfied. So, one may suppose that particular algorithms of type 2
will be proposed sooner or later.

3.3.2. Property of homogeneity.For any algorithm , for any rank of extractionx and
for any appeared noden, we call pointer path of node n at rank xthe path froms to n
determined by reversing the sequencen, father(n), father(father(n)), . . . , s. We denote it
Cx,n. For any updating type, we have:L(Cx,n) ≥ gx(n). For algorithms of type 2 or 3, it
may be easily verified that:L(Cx,n) = gx(n). We shall say that theproperty of homogeneity
is satisfied when for anyx rank of extraction, for anyn node already appearedand situated
on a path from s to T, L(Cx,n)= gx(n). Clearly: algorithms of type 2 or 3 satisfy the
property of homogeneity.A priori that is not the case for ’s of type 1; nevertheless,
it may be verified that the specific constraints considered by Pearl imply that algorithm
BF∗ satisfy the property of homogeneity. The homogeneity property will be exploited for
proving a theorem (Section 5.6) which provides a general relation concerning the lengths
of the solution paths.

3.4. Extraction modes—algorithmsE

Line 4 in figure 1 (Nilsson’s A) orders abest-first extractionthat is described in line 21.
Many other Heuristic Search algorithms use the same extraction mode. The best-first ex-
traction has an intuitive motivation when the algorithms use the evaluations given byg+ h
in order to guide the search; indeed, for any noden, gx(n)may be interpreted as an estimate
of g∗(n) andh(n) may be interpreted as an estimate ofh∗(n); so gx(n) + h(n) may be
interpreted as an estimate ofg∗(n)+h∗(n), that is to say: the length of a shortest path from
s to T passing byn; finally, the minimal value ofgx(n)+ h(n), for anyn in open, may be
interpreted as an estimate of the length of a shortest path froms to T ; which leads to respect
thebest-first constraint: extractñ of opensuch asfmemo(ñ) = min

q∈ open fmemo(q). However,
according to the application context, it may seem not pertinent to chooseñ only by virtue of
this formula; (Ghallab, 1982; Ghallab and Allard, 1982, 1983; Pearl and Kim, 1982; Pearl,
1984) have proposed to relax thebest-firstconstraint: given a positive numberε, ñ may be
extracted seeing thatfmemo(ñ) ≤ (1+ ε) · min

q∈ open fmemo(q); this extraction mode allows to
use a secondary criterion, depending on the application, in order to complete the choice of
ñ. Hereafter we propose a generalization of the previous extraction modes. We shall see that
this generalization is also compatible with interesting properties concerning the lengths of
the solution paths. Beforehand we have to introduce the notion ofoverpassed function.

3.4.1. Overpassed functions.Let a function f | x ∈ D ⊂ R→ f (x) ∈ R. We shall say
thatf is overpassed on Dwhen:∀x ∈ D, ∃y ∈ D, f (x) ≤ y. Likewise, we shall say thata
set S1 is overpassed by a set S2 when:∀x ∈ S1, ∃y ∈ S2, x ≤ y.
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3.4.2. E-extraction. Consider a particular application of an algorithm. Suppose that
there exists a functionE widely increasing and overpassed onW, such as during this
application, for any rank of extraction,min

q∈ open fmemo(q) ≤ E( min
q∈ open fmemo(q)). This con-

dition may be satisfied, for instance, if∀x ∈ W, x ≤ E(x). Suppose that the algorithm
extracts always añn of opensuch asfmemo(ñ) ≤ E( min

q∈ open fmemo(q)). We shall say that
the algorithm usesE-extractionand it will be then denoted byE . We may distinguish
algorithms E whose updating type is 1, 2 or 3.

Remarks about the generalization:The best-first extraction is a particular case ofE-
extraction: takeE equal to the identity functionJ . Many known algorithms (see column 7
of figure 2) use the best-first extraction too: HPA, A of Harris, extended A of Pohl, SDW,
BF∗ (note: in BF∗, BF means Best-First), B′, D and A∗∗ ·A∗ε and Aε use another simple form
of E-extraction:11 takeE = (1+ ε) ·J . It may be verified that algorithms B, C, IDA∗ use
other particular (and less evident, see justification in Farreny (1997c)) forms ofE-extraction.

3.5. AlgorithmsÃ

In order to define this sub-family of algorithmswe suppose that a lengthL is available;
thus there exists a monoid (V,2) such that2 is the operation used byL and any arc of
the state graphs is valued by a number taken inV. An algorithmÃ is a whose evaluation
function satisfies the following constraint: for any rank of extractionx, for any sonn of
the node extracted at rankx, fx(n) = 2(gx(n), hx(n)), wheregx(n) is the standard term
defined in Section 2.1, whilehx(n) is a value ofV (calledheuristic term).

For anyx and anyn, hx(n) may always beinterpreted(well knowing or not, according
to the context), asan estimateof the length of a minimal path, if any, fromn to T . Note:
if the monoid (V,2) is a group, any may be seen as an algorithm̃A: it is sufficient to
takehx(n) = 2(g′x(n), fx(n)) whereg′x(n) is the inverse ofg′x(n) in the monoid (V,2);
if (V,2) is not a group we may define some’s that are not algorithms̃A: thenÃ’s form a
propersubset of the set made by the’s.

Remarks about the generalization.Nilsson’s A is a particular̃A that uses a static heuristic
term.12 It may be easily verified that the following algorithms are particularÃ too: extended
A of Pohl, B, C, A∗ε , Aε, B′, D, SDW. At first sight, the evaluation functions of algorithms
BF∗ and A∗∗ have not the form required for̃A; but BF∗ and A∗∗ are defined on the monoid
(R+,+) and use evaluation functionsf such as:f ≥ g; thus, the evaluation functionf may
be formulated as a sumg+ h (with h ≥ 0) and so we can conclude that BF∗ and A∗∗ are
particular algorithms̃A. Algorithm HPA behaves as añA, because its evaluation function
is proportional to the evaluation function of añA. It may be verified that algorithm IDA∗

behaves as añA during each iteration.
Clearly, we may distinguish algorithms̃A whose updating type is 1, 2 or 3.

3.6. Worth-considering constraints for h or f

We propose to relax the constraints commonly required for the evaluation functionf or
for the heuristic functionh. In this less constrained context we shall prove general results
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concerning the completeness and the admissibility or sub-admissibility; so, it will be pos-
sible to use a larger variety of functionsf or h and thus the field of applications will be
potentially extended. Still we denote byV the domain of the arc values (a lengthL is defined
onV, the range ofh is included inV), byW the range off and byG the state graph dealt
with. Given a Heuristic Search algorithma and a state graphG, we denote byS(a,G) the
set of the nodesn such that: 1)h∗(n) is defined and 2)n is evaluated during the application
of a to G.

3.6.1. Covered h or f. We say that the heuristic functionh of an algorithmÃ is covered
by F when the algorithm is applied to G, if and only if: 1) there exists a functionF whose
domain isS(Ã,G), whose range isV and 2) for any noden of S(Ã,G), if n is evaluated
at rankx thenhx(n) ≤ F(n).

Remarks about the generalization: The preceding constraint widely extends the basic
constraint respected by Nilsson’s A∗ and many successors:h(n) ≤ h∗(n) (in this particular
case we said that thestaticheuristic term waslower-boundingoradmissible, see Section 2.2).

We can immediately propose several general examples of covered heuristic functions:
1) theh’s that are upper-bounded (i.e.,∃M ∈ V, for any noden evaluated at any rankx:
hx(n) ≤ M), 2) theh’s that aresemi-static(i.e., for any evaluated noden, hx(n) is allowed
to take only a finite number of distinct values), 3) theh’s that are simplystatic (i.e., for
any evaluated noden, for any i and j ranks for whichn is evaluated:hi (n) = h j (n)),
4) theh’s that satisfy relations such as: for any noden evaluated at any rankx, hx(n) ≤
(1+ α) · h∗(n) + H, where the constantsα and H are positive or zero (but note:h is not
necessarily static).

Now, algorithms A, HPA, B, C, A∗ε , Aε, IDA∗ and SDW use static (thus covered) heuristic
functions (see column 5 in figure 2); moreover, Aε satisfy a relation of the formh ≤
(1+ α) · h∗, while Harris’A satisfies a relation of the formh ≤ H . It may be verified that
the extended A of Pohl, which has introduced thedynamic weighting, uses a semi static
(thus covered)h and that B′ and D use other particular forms of coveredh’s.

We say that the evaluation functionf of a iscovered by F when the algorithm is applied
to G, if and only if: 1) there exists a functionF whose domain isS( ,G), whose range is
V and 2) for any noden of S( ,G), if n is evaluated at rankx then fx(n) ≤ F(n).

Remark about the generalization: It may be verified that A∗∗ use a coveredf .
We denotẽAF an algorithmÃ that exploits a coveredh, ÃF

E anÃF that usesE-extraction,
F an algorithm that exploits a coveredf, F

E a F that useE-extraction.

3.6.2. Finitely-decreasing h or f. Given a noden, we denote [hx(n)]x the sequence of
values taken by the heuristic functionh for the successive ranks of extractionx for whichn
is evaluated. We say that the heuristic functionh is finitely-decreasing when an algorithm̃A
is applied to G, if and only if: for any evaluated noden of G, there does not exist any infinite
sub-sequence of [hx(n)]x that is strictly decreasing. Likewise, we say that the evaluation
function f is finitely-decreasing when an algorithmis applied to G, if and only if: for this
application, for any evaluated noden of G, there does not exist any infinite sub-sequence
of [ fx(n)]x that is strictly decreasing.

Remarks about the generalization: Thefinite-decreaseof h or f is a rather soft constraint.
Indeed, it seems often natural that for any noden the estimateshx(n) cannot decrease
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indefinitely. Obviously, all the semi-static functions and therefore all the static functions
are finitely decreasing. It may be easily verified that algorithms A, HPA, extended A of
Pohl, B, A∗ε , Aε, C, B′, IDA∗, D and SDW use finitely decreasing (most of them use a static
or semi statich; see Column 5 in figure 2).

3.6.3. Quasi-coincident h. We say that heuristic functionh is quasi-coincident when an
algorithm Ã is applied to G, if and only if: ∃mT ∈ V, ∃m′T ∈ V,2(mT ,m′T ) ≥ en (en:
identity element), for any evaluated goal nodet , hx(t) ≥ mT .

Remarks about the generalization: It may be easily verified that A, HPA, extended A of
Pohl, B, A∗ε , Aε, C, BF∗, B′, IDA∗, D, A∗∗, SDW are quasi-coincident;13 indeed, all these
algorithms useV = R+,2 = +(en = 0) and heuristic functionh (implicit in the case of
BF∗ and A∗∗) that is positive or zero.

3.7. A larger family of state graphs

We identify now a wide family of state graphs: theL-standardstate graphs. It includes, at
least, all the state graphs considered in the literature related to A, HPA, extended A of Pohl,
B, A∗ε , Aε, C, BF∗, B′, IDA∗, D, A∗∗ and SDW.

3.7.1. L-uncompressibility. Let L be the used length.14 We say that a state graphG
is L-uncompressibleif and only if: ∀M ∈ V, ∃k ∈ N, ∀C elementary15 path ofG from
s,N (C) > k⇒ L(C) > M, whereN (C) denotes the number of arcs ofC. That is to say:
for any M of V, beyond some number of arcs, the lengthL(C) of any elementary pathC
issued froms is greater thanM .

Remarks about the generalization: Clearly: anyδ-graph (see Section 2.3) isLadd-uncom-
pressible and any finite graph isL-uncompressible (whatever isL). All the algorithms
above-mentioned, except Aε, have been analyzed by their authors in case of application to
δ-graphs (see Column 4 in figure 2); Ghallab and Allard have defined and studied Aε when
it is applied to graphs less constrained thanδ-graphs, but these graphs are still particular
Ladd-uncompressible graphs.

3.7.2. L-standard state graphs.We say that a state graph isL-standard if and only if it
satisfies the four following conditions: it is son-finite, it contains at least a goal, it isL-
uncompressible, it does not contain any absorbant circuit.16 Note: it may be easily verified
that anyL-standard graph owns at least one minimal path (in the sense ofL) from s to T .

Remarks about the generalization: All the above-mentioned algorithms have been ana-
lyzed by their authors in case of application to particularL-standard graphs.

Within the general framework that we have proposed, it is possible now to establish
various general results related to the completeness (Section 4 below) and to the admissibility
or sub-admissibility (Section 5).

4. General results about the completeness

Remember thatW designates the range of the evaluation function andV the set of the arc
values. Here are other notations that will be used for expressing some properties of the
algorithms.
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For a particular application of the algorithm,extracti designates thei th node extracted
from open; always: extract1 = s; in figure 3, extracti is identified by the programming
variablem(lines 5 to 8);openi designates the setopenat the time to decide thei th extraction.

fi (n) designates the value of the evaluation functionf already assigned to the node n,
available when the ith extraction(or ith expansion)begins, i.e., at the time when line 5 is
interpreted in figure 3;f i (n) is identified by the programming variablefmemo(n), that does
not explicit the extraction ranki . But fi (n) designates the value of the evaluation function
f which is calculated for the node n when the ith extraction is realized; in figure 3, the
value fi (n) is identified by the programming variablef (n, extraction-rank) (see line 9).

4.1. Applications with ceiling, circumscribed applications, flattened applications

We say that the application of an algorithmto a state graphG admits aceiling if and only
if: ∃M ∈W, ∀i rank of extraction,f i (extracti ) ≤ M . We say that it iscircumscribedif and
only if: ∀M ∈W, ∃k ∈ N, ∀i rank of extraction,f i (extracti ) ≤ M ⇒ N ∗(s, extracti ) ≤ k,
whereN ∗(s, extracti ) is the minimum of the number of arcs of the paths froms to extracti
in G. We say that it isflattenedif and only if: ∀n appeared node ofG, ∃i ∈ N, ∀ j rank of
extraction,j > i ⇒ f j (n) ≥ f i (n).

4.2. Input nodes

Let G be a state graph that contains at least one goal and at which anÃ is applied. It is
easily verified that: at the time of any extractioni , on any path ofG from s to T , there exists
a node belonging toopeni whose predecessors along the path belong toclosedi ; this node
is called:input of the path for the considered extraction.

4.3. Lemma

Any algorithm applied to a state graph that contains at least one goal only can terminate
extracting a goal node.

Proof: Let C be a path froms to T . ∀i rank of extraction,∃n ∈ openi : we may consider
the input ofC at ranki . Thus, the algorithm can terminate only executing line 5 of the code,
that is to say: extracting a goal node. 2

4.4. General completeness theorem for’s of type 1, 2 or 3

Let an algorithm of type1, 2 or 3 that is applied to aL-standard state graph. If the
algorithm is of type1 or 2, in order that the algorithm terminates extracting a goal node, it
is necessary and sufficient that the application 1) admits a ceiling and 2) is circumscribed
and 3) is flattened; if the algorithm is of type3 it is necessary and sufficient that the
application 1) admits a ceiling and 2) is circumscribed.

Proof: a) Let us prove that conditions 1, 2, 3, are necessary for any type of algorithm.
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Let I be the last rank of extraction before the termination.∀n appeared node,∃i = I , ∀ j
rank of extraction,j > i ⇒ f j (n) = f i (n); thus the application is flattened.
∃M = max

i≤I f i (extracti ),M ∈W (because f i (extracti )∈W), ∀i rank of extraction, f i

(extracti ) ≤ M ; thus the application admits a ceiling.
∀M ′ ∈W, ∃k = max

i≤I N ∗(s, extracti ), k ∈ N, ∀i rank of extraction,f i (extracti ) ≤ M ′ ⇒
N ∗(s, extracti ) ≤ k; thus the application is circumscribed.

b) Let us prove that conditions 1, 2, 3 are sufficient when the algorithmis of type 1 or
2, while the conditions 1, 2 are sufficient when the algorithmis of type 3.

Because the application is circumscribed:∀M ∈ W, ∃k ∈ N, ∀i rank of extraction,
f i (extracti )≤M ⇒ N ∗(s, extracti ) ≤ k. Because of the application admits a ceiling:
∃M ∈W, ∀i rank of extractionf i (extracti )≤M . Thus:∃k ∈ N, ∀i rank of extraction,
extracti ∈ E = {n |N ∗(s, n) ≤ k}.

Because the graph is son-finite, it may be easily verified thatE is finite. Thus, in order
that the algorithm does not terminate, it is necessary that a noden0 of E may be indefinitely
extracted of open (line 4 in the code of the algorithm, figure 4). Now:

if the algorithm is of type 1 or 2,f x(n0) strictly decreases each time thatn0 is extracted
of open; because the application is flattened, it is impossible to obtain an infinite and strictly
decreasing sequence of valuesf x(n0);

if the algorithm is of type 3,gx(n0) strictly decreases each time thatn0 is extracted of
open; because the application is son-finite,L-uncompressible and without absorbant circuit,
it may be easily verified thatgx(n0) only takes a finite number of distinct values whenx runs;
thus it is impossible to obtain an infinite and strictly decreasing sequence of valuesgx(n0).

Thus the algorithm terminates. According to Lemma 4.3: extracting a goal node.2

4.5. Infra strictly increasing functions

We shall say that a functionf defined fromD ⊂ R toR is infra strictly increasingon D if
and only if∀x ∈ D, ∃x′ ∈ D, ∀y ∈ D, y > x′ ⇒ f (y) > f (x).

4.6. Overpassing functions

Let a function f | x ∈ D ⊂ R→ f (x) ∈ R. We shall say thatf is overpassing on Dif and
only if: ∀x ∈ D, ∃y ∈ D, x ≤ f (y).

4.7. Sufficient conditions of completeness forF
E
′s of type 1, 2 or 3

Let an algorithm F
E of type1, 2,or 3, that is applied to aL-standard state graph G. Suppose

thatW is overpassed byV (see Section 3.4). Suppose that there existsϕ function that is
overpassing and infra strictly increasing onV. Suppose that for any n evaluated node of
G: fx(n) ≥ ϕ(g∗(n)). If the algorithm is of type1 or 2 and if f is finitely decreasing for the
considered application to G, then the algorithm terminates extracting a goal node17; if the
algorithm is of type3, without other condition, then it terminates extracting a goal node.

Proof: a) BecauseG is son-finite,L-uncompressible and without absorbant circuits, it
may be easily verified thatg∗(n) is defined for any noden of G, that is to say: there exists
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a minimal path froms to n and, even: there exists anelementaryminimal path froms
to n; let us call itCn: g∗(n) = L(Cn); by hypothesis, for any evaluated noden we have:
fx(n) ≥ ϕ(L(Cn)).

b) Let us prove that: iff is finitely decreasing for the considered application then this
application is flattened. Else:∃n appeared node ofG, ∀i ∈ N, ∃k rank of extraction for
which n est evaluated again, with:k > i and fk(n) < f i (n). Thus, fori = 1, ∃k1 rank of
extraction for whichn is evaluated again, with:k1> 1 et fk1(n) < f1(n); for i = k1, ∃k2
rank of extraction for whichn is evaluated again, with:k2 > k1 and fk2(n) < f k1(n);
and so on; the algorithm will calculate aninfinite sequenceof successive evaluation values
fk(n): f1(n), fk1(n), fk2(n), . . . (with: 1< k1< k2< . . .) that are strictly decreasing thus
distinct. This is contradictory with the definition of an evaluation function that is finitely
decreasing for the considered application.

c) BecauseG contains at least one goal,∃C path froms to T . BecauseG isL-standard,
it may be easily verified that:∀n ∈ C, h∗(n) is defined. Because we consider an algorithm

F
, f is locally upper-bounded onW alongC, for the considered application, thus:∃M ′ ∈

W, ∀n evaluated node ofC, fx(n) ≤ M ′. By definition, extraction functionE is overpassed
onW, thus:∃M ∈ W, E (M ′) ≤ M . BecauseG contains at least one goal, according to
Lemma 4.3:∀i rank of extraction, ∃ei ∈ C ∩ openi .

Now, by definition ofE : f i (extracti ) ≤ E( min
q∈ open f i (q)).

BecauseE is increasing:f i (extracti ) ≤ E( f i (ei )). Let j be the rank of extraction,j < i ,
for which valuef i (ei )has been assigned toei : f j (ei ) = f i (ei ). Becauseei ∈ C, f j (ei ) ≤ M ′

thus f i (ei ) ≤ M ′. BecauseE is increasing:f i (extracti ) ≤ E(M ′), thus: f i (extracti ) ≤ M .
Recapitulate:∃M ∈ W, ∀i rank of extraction,f i (extracti ) ≤ M , thus: the application
admits a ceiling.

d) LetV1=W∩VandV2=W−V·Woverpassed byV⇔∀x ∈ V2, ∃y ∈ V, x < y. Be-
causeϕ is overpassing onV : ∀M ∈ V : ∃x ∈ V such asϕ(x) ≥ M . Becauseϕ is infra strictly
increasing onV : ∃x′ ∈ V, x′ ≥ x, ∀y ∈ V, y > x′ ⇒ ϕ(y) > ϕ(x) ≥ M . BecauseG isL-
uncompressible:∀M ′ ∈V, especially forM ′ = x′, ∃k∈N, ∀C′ elementary path issued from
s: N (C ′) > k⇒ L(C ′) > x′. By hypothesis, for any evaluatednand for any rankx, fx(n) ≥
ϕ(L(Cn)), thus:∀i rank of extraction, f i (extracti ) ≤ M ⇒ ϕ(L(Cn)) ≤ M ; in this case,
necessarily:L(Cn) ≤ x′, else, becauseL(Cn) ∈ Vwe shall have:L(Cn)> x′ ⇒ϕ(L(Cn)) >

M . Let us take:C ′ = Cn.L(Cn) ≤ x′ ⇒ N (Cn) ≤ k⇒ N ∗(s, extracti) ≤ k. Recapitulate:
∀M ∈ V, ∃k ∈ N, ∀i rank of extraction,f i (extracti ) ≤ M ⇒ N ∗(s, extracti ) ≤ k. This
proposition is namely verified for∀M ∈ V1. Moreover,∀M ∈V2, ∃M ′ ∈V1,M <M ′;
for M ′, ∃k∈N, ∀i rank of extraction, f i (extracti )≤M ′ ⇒ N ∗(s, extracti ) ≤ k; because
f i (extracti ) ≤ M ⇒ f i (extracti ) ≤ M ′, we have:f i (extracti ) ≤ M ⇒ (s, extracti ) ≤ k.
Finally:∀M ∈W, ∃k ∈ N, ∀i rank of extraction,f i (extracti ) ≤ M ⇒ N ∗(s, extracti ) ≤ k,
thus the application of algorithm is circumscribed.

e) Thus we may apply Theorem 4.4. 2

Remarks about some rediscoveries and generalizations: Nilsson’s A is a particular case
of F

E of type 1, 2, 3:F is h∗ andE is the identity functionJ . The reference monoid is
(R+,+) thus the reference length isLadd. Nilsson consider son-finiteδ-graphs that contain
at least one goal, that is to say particularLadd-standard state graphs. Heuristic termh is



COMPLETENESS AND ADMISSIBILITY 369

positive. TakingW = V = R+, ϕ = J (identity function) we may apply Theorem 4.7: A
terminates finding a path froms to T .

Let us note that Theorem 4.7 may be invoked in very more general contexts; for instance,
if we relax A, using anon staticheuristic termh but keeping the type 3 (and also:f =
g+ h, 0 ≤ h ≤ h∗, ϕ = J ), then we obtain añA which necessarily terminates finding a
path froms to T .

Likewise, general Theorems 4.4 and 4.7 may be18 applied to rediscover and extend the
results about the completeness concerning the following algorithms: HPA, extended A of
Pohl, B, A∗ε , Aε ’s, C’s, BF∗’s, Mero’s B′ algorithms, IDA∗’s, D’s, A∗∗’s and SDW’s.

5. General results to approach the sub-admissibility

The six original properties presented below form a set of tools to establish formulas of sub-
admissibility. Statements 5.4, 5.5 and 5.6 directly provide formulas of sub-admissibility;
Statements 5.4 and 5.6 presuppose the termination of the considered algorithms while the
termination is a part of the conclusion in Statement 5.5.

5.1 Lemma forÃF’s of type 1, 2 or 3

Let G be a state graph at which is applied añA of type1, 2 or 3 whose heuristic term
h is covered by F(thus the algorithm is anÃF ). Let C be a path of G from s to T such
as, ∀i rank of extraction, gi−1(ei ) = L(Cei ) and h∗(ei ) is defined, where ei is the input
of C at the time to decide the ith extraction andCei is the part ofC from s to ei . Then:
f i (ei ) ≤ 2(L(Cei ), F(ei )) where f i (ei ) is the evaluation value fastened to ei at the ith
extraction.

This result generalizesLemma 3.1proposed by Nilsson19 (1971) (also:Result 2by Nilsson
(1980) andLemma 1of Pearl (1984)).

Proof: By hypothesis, at the time to decide thei th extraction, we havegi−1(ei ) = L(Cei ).
Let j, j < i , the rank of the extraction which orders:gj (ei )←L(Cei ); at the time of
this same extraction, the algorithm has also evaluatedf j (ei ) = 2(gj (ei ), h j (ei )) =
2(L(Cei ), h j (ei )). If the algorithm is of type 3, taking into account that the last update
of gx(ei ), before the ranki , has been realized at rankx = j , it is also at rankj that
has been realized the last update off x(ei ), thus: f i (ei ) = 2(L(Cei ), h j (ei )); if the algo-
rithm is of type 1 or 2, for any rankx greater thanj we must havef x(ei )≤ f j (ei ) thus
f i (ei )≤2(L(Cei ), h j (ei )). Becauseh∗(ei ) is defined,F(ei ) is also defined andh j (ei )≤ F(ei ).
Because2 is increasing in the right place:2(L(Cei ), h j (ei )) ≤ 2(L(Cei ), F(ei )). Thus:
f i (ei ) ≤ 2(L(Cei ), F(ei )). 2

5.2. Lemma for ′s of type 3

Let G be a state graph without absorbant circuit. Suppose that2 is strictly increasing in
the left place20. Let an algorithm of type3 applied to G. Let n be any node of G. LetC be
any minimal path from s to n. DenoteC = n0, . . . ,nt where n0 = s and nt = n.∀i rank of
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extraction, if n /∈ closed, let nk(k ∈ N, 0 ≤ k ≤ t) the input ofC at the time to decide the
ith extraction. Then:∀ j ∈ N, 0≤ j ≤ k⇒ gi−1(nj ) = g∗(nj ).

This result generalizes theLemma 2proposed by Pearl21 (1984).

Proof: BecauseG does not admit absorbant circuit, we have:gi−1(n0) = en; now:
g∗(n0) = en, thus:gi−1(n0) = g∗(n0). If k = 0 then the proposition is verified. Else,
we shall execute a recurrence alongC. Suppose that:∃q ∈ N, 0≤ q < k, ∀ j ∈ N, 0≤ j ≤
q⇒ gi−1(nj ) = g∗(nj ).

By definition of inputnk: nq ∈ closed. Suppose that, at the time to decide thei th extrac-
tion, nq has been put inclosedfor the last time when thepth extraction has been executed
(thus: p< i ). Note:nq is the extracted node at the time of thispth extraction, thusgx(nq)

may be lowered only ifnq is son of itself; but, becauseG does not admit absorbant circuit:
gp(nq) = gp−1(nq). Then:gp−1(nq) = g∗(nq) else:gp−1(nq) > g∗(nq) (becausegp−1(nq)

measures the length of a path froms to nq) and, in order to lowergx(nq) from gp−1(nq)

to gi−1(nq) = g∗(nq), it is necessary thatnq leavesclosed(because the type of the al-
gorithm is 3) and goes back inclosedafter thepth extraction, contrarily to the preceding
hypothesis.

At the time of thepth extraction, the sonnq+1 of nq has been considered, thus:
gp(nq+1) ≤ 2(gp−1(nq), c(nq, nq+1)) = 2(g∗(nq), c(nq, nq+1)). Becausei − 1 ≥ p, we
have:gi−1(nq+1) ≤ 2(g∗(nq), c(nq, nq+1)). Let Cq be the elementary sub-path ofC from
s to nq. Becauseg∗(nq) ≤ L(Cq) (by definition ofg∗) and because2 is increasing in the
left place:gi−1(nq+1) ≤ 2(L(Cq), c(nq, nq+1)) = L(Cq+1).

BecauseC is minimal froms to n and because2 is strictly increasing in the left place,
it may be easily verified that:L(Cq+1) = g∗(nq+1). Thus:gi−1(nq+1) ≤ g∗(nq+1).

Moreover, becausegi−1(nq+1)measures the length of a path froms tonq+1: gi−1(nq+1) ≥
g∗(nq+1). Finally: gi−1(nq+1) = g∗(nq+1).

We may iterate, whileq < k. So we obtain:gi−1(nk) = g∗(nk). 2

5.3. Corollary for ÃF’s of type 3

Let G be a state graph without absorbant circuit. Suppose that2 is strictly increasing in
the left place. LetC be any minimal path of G from s to T. Suppose that anÃ of type3 is
applied to G, whose heuristic term h is covered by F(thus theÃ is an ÃF ). Then,∀i rank
of extraction: f i (ei ) ≤ 2(g∗(ei ), F(ei )) where ei is the input ofC at the time to decide the
ith extraction whilef i (ei ) is the evaluation value fastened to ei at this precise moment.

This result, derived from the general Lemma 5.2, yet widely includesLemma 3.1proposed
by Nilsson (1971).

Proof: Let C = n0, . . . ,nt with s= n0 andnt ∈ T ; let nk(k ∈ N, 0≤ k ≤ t) the input of
C at the time to decide thei th extraction. BecauseC is minimal froms to n and because2
is strictly increasing in the left place, it may be easily verified that the length of the part of
C from s to nk is minimal betweens andnk: it definesg∗(nk), while the length of the part
of C from nk to T is minimal betweennk andT : it definesh∗(nk).
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According to Lemma 5.2, at the time to decide thei th extraction, we have:gi−1(nk) =
g∗(nk). Let j, j < i , the rank of the extraction that orders:gj (nk) ← g∗(nk); at the time
of the same extraction, the algorithm has also evaluatedf j (nk) = 2(gj (nk), h j (nk)) =
2(g∗(nk), h j (nk)).

Because the algorithm is of type 3, because the last update ofgx(nk) before ranki has
been executed at rankx = j , we conclude that the last update off x(nk) has been executed
at rank j , thus: f i (nk) = 2(g∗(nk), h j (nk)).

Now, there exists a functionF taking its values onV, such as: for any evaluated noden
for which h∗(n) is defined,hx(n) ≤ F(n). Here:h∗(nk) is defined, thus:h j (nk) ≤ F(nk).
And, because2 is increasing in the right place:2(g∗(nk), h j (nk)) ≤ 2(g∗(nk), F(nk)).
Thus: f i (nk) ≤ 2(g∗(nk), F(nk)). 2

5.4. Theorem of extraction in case of termination, forÃF
E ’s of type 3

Let G be a state graph without absorbant circuit and that contains at least one goal. Let an
algorithm ÃE of type3 applied to G, which terminates. Suppose that, when the algorithm
is applied, h is covered by F(thus the algorithm is anÃF

E ) and quasi-coincident(thus:
∃mT ∈ V, ∃m′T ∈ V,2(mT ,m′T ) ≥ en). Suppose that2 is strictly increasing in the left
place. Then, at the time of termination, the algorithm has found a pathC from s to T such
as: L(C) ≤ 2(E(2(g∗(ei ), F(ei ))),m′T ), where ei is the input, when is decided the ith
and last extraction, of any minimal path from s to T in G.

Proof: According to Lemma 4.3, at the time of the termination, the algorithm extracts a
goalt . Whatever the type of the algorithm:∃k ∈ N, k < i, f i (t) = fk(t) = 2(gk(t), hk(t)).
According the definition ofg: gk(t) ≥ gi−1(t). Becausehx is quasi-coincident:hk(t) ≥ mT .
Because2 is increasing in the left and right places:f i (extracti ) = f i (t) ≥ 2(gi−1(t),mT ).

Thus: 2( f i (extracti ),m′T ) ≥ 2(2(gi−1(t),mT ),m′T ) = 2(gi−1(t),2(mT ,m′T )) ≥
2(gi−1(t), en) = gi−1(t).

Let C be the pointer path oft at ranki . For any algorithm of type 2 ou 3, it may be
easily verified that:L(C) = gi−1(t); thus:L(C) ≤ 2( f i (extracti ),m′T ).

According to Corollary 5.3: at the time to execute thei th extraction, the inputei of C is
in openi and: f i (ei ) ≤ 2(g∗(ei ), F(ei )). According to the definition of theE-extraction:

f i (extracti ) ≤ E
(

min
n∈ fronti

f i (n)
)
.

BecauseE is increasing onVand becauseei ∈ openi , we have:f i (extracti ) ≤ E(2(g∗(ei ),

F(ei ))).
Thus:L(C) ≤ 2(E(2(g∗(ei ), F(ei ))),m′T ). 2

In the following theorem, the termination of the algorithm is not an hypothesis but a
conclusion.
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5.5. Theorem of sub-admissibility for̃AF
E ’s of type 3 when h is covered, quasi-coincident

and lower-bounded

Let G be aL-standard state graph at which is applied an algorithm̃AE of type3, whose
heuristic function h is covered by F during the application(thus the algorithm is añAF

E )
quasi-coincident(thus:∃mT ∈ V, ∃m′T ∈ V,2(mT ,m′T ) ≥ en) and lower-bounded by an
element m ofV such as∃m′ ∈ V,2(m′,m) ≥ en. Suppose that2 is strictly increasing in
the left place. Then, the algorithm terminates finding a pathC of G from s to T such as:
L(C) ≤ 2(E(2(g∗(ei ), F(ei ))),m′T ), where ei is the input, at the time to decide the ith
and last extraction, of any minimal path from s to T in G.

This result generalizes Theorem 3.1 proposed by Nilsson22 (1971) (also: Result 4 in
Nilsson (1980) and Theorem 2 in Pearl (1984)).

Proof: a) Because the evaluation function has the form:fx(n) = 2(gx(n), hx(n)), it
takes its values inV; thusW ⊂ V; thusW is overpassed byV.

Because2 is increasing in the right place:fx(n) ≥ 2(gx(n),m). Let ϕ be the function
ϕ | y ∈ V→ ϕ(y) = 2(y,m) ∈ V. Thus: fx(n) ≥ ϕ(gx(n)). Becausegx(n) measures the
length of a path froms to n:ϕ(gx(n)) ≥ ϕ(g∗(n)), thus: fx(n) ≥ ϕ(g∗(n)).

Functionϕ is overpassing onV because:∀x ∈ V, ∃y ∈ V such as:x ≤ ϕ(y); indeed,
taking y = 2(x,m′) and knowing that2 is associative and increasing in the right place,
we verify that:ϕ(y) = 2(y,m) = 2(2(x,m′),m) = 2(x,2(m′,m)) ≥ 2(x, en) = x.
Because2 is strictly increasing in the left place, we observe thatϕ is strictly increasing
thus infra strictly increasing onV.

So we may apply Theorem 4.7 and conclude that the algorithm terminates immediately
after extracting a goal fromopen.

b) Thus we may apply Theorem 5.4 and infer that the algorithm discovers a pathC from
s to T such asL(C) ≤ 2(E(2(g∗(ei ), F(ei ))),m′T ), whereei is the input ofC at the time
of the last extractioni . 2

In the following lemma, the termination of the algorithm is anew an hypothesis.

5.6. Lemma of the found path, for’s of type 1, 2 or 3

Let G be a state graph that contains at least one goal. Let an algorithmof type2 or
3, that is applied to G and terminates at the time of the ith extraction. Suppose that there
exists a functionÄ, whose domain is the range Tf of fx(n) when n runs on T such as:
for any evaluated goal node t, gx(t) ≤ Ä( fx(t)). Then, at the time of the termination, the
algorithm has found a pathC from s to T such as: L(C) ≤ Ä( f i (extracti )). This lemma
holds for the algorithms of type1 when the property of homogeneity is satisfied.

This result generalizesTheorem 2∗ proposed by Pearl23 (1984).

Proof: According to Lemma 4.3, at the time of the termination, the algorithm extracts a
goal t0. Whatever the type of the algorithm:∃k ∈ N, k < i, f i (extracti ) = f i (t0) = fk(t0).
Let C be the pointer path oft0 at ranki ; we have noted (Section 3.8) that if the algorithm is
of type 2 or 3 thenL(C) = gi−1(t0); this relation holds for the algorithms of type 1 when the
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property of homogeneity paths is satisfied, becauset0 is previously appeared and is situated
on a path froms to T . According to the definition ofg: gi−1(t0) ≤ gk(t0); by hypothesis:
gk(t0) ≤ Ä( fk(t0)). Thus:L(C) ≤ Ä( fk(t0)) = Ä( f i (extracti )). 2

Remarks about some rediscoveries and generalizations:Nilsson’s A∗ algorithm is also
a particular case of̃AF

E of type 3. The state graphs considered by Nilsson contain at least
one goal and do not admit absorbant circuits. The heuristic term is quasi-coincident (take
mT = m′T = 0). The operation2 (that is to say+), is strictly increasing in the left place.
Thus we may apply Theorem 5.4:in case of termination,Ladd(C) ≤ g∗(ei )+h∗(ei ), where
Ladd(C) is the length of the found pathC from s to T , while ei is the final input of any
minimal pathC0 from s to T24. Becauseei belongs toC0 (minimal), it may be easily verified
that:g∗(ei ) + h∗(ei ) = Ladd(C0). ThusLadd(C) = h∗(s): in case of terminationthe found
path is minimal. Really, we may right away apply Theorem 5.5, which moreover assures the
termination (also proved in Section 4.8, applying Theorem 4.7): the admissibility of A∗’s
is thus rediscovered.

The admissibility may be still proved when some constraints applied to Nilsson’s A∗

algorithm are relaxed; indeed, providing that the updating type remains type 3, Theorem 5.5
is yet applicable to monoids (V,2) other than group(R+,+), to state graphs that are not
necessarilyδ-graphs, to heuristic termsh that are not necessarily static or positive. Moreover,
Theorem 5.5 gives some formulas of sub-admissibility for extraction modes which may
be not best-first and forhx which may be not lower-bounding. If we relax Nilsson’s A∗

algorithms towards̃A’s of type 1 or 2, we can establish some formulas of sub-admissibility
by combining the Result 4.7 (possibly 4.4) with Result 5.6.

Likewise, Theorems 5.1–5.6 may be25 applied to rediscover and extend the known results
about the admissibility or the sub-admissibility concerning the HPA’s, extended A’s of Pohl,
B’s, A∗ε ’s, Aε ’s, C’s, BF∗’s, Mero’s B′ algorithms, IDA∗’s, D’s, A∗∗’s and SDW’s.

6. Concluding remarks and perspectives

We have proposed a formalization that generalizes diverse works concerning the
Heuristically-Ordered Search in state graphs. We have considered 5 dimensions: 1) the
notion of length to measure the paths between nodes, 2) the characteristics of the state
graphs dealt with, 3) the choices of the nodes to expand, 4) the kinds of updating to rea-
lize, 5) the properties of the evaluation functions that guide the search. We have employed
this formalization to present several general theorems about the completeness and about the
admissibility/sub-admissibility. This formalization and the derived results allow a compar-
ative presentation of the algorithms; they facilitate a better understanding of the key points
and limitations, so as the revelation of non exploited potentialities.

This work may be developed to tackle the problems of completeness, admissibility or
sub-admissibility for other variants of algorithms or perhaps other variants of evaluation
functions, or even other variants of state graphs, beyond the hypotheses here considered.
So we may be concerned with real-time algorithms such as RTA∗ (Korf, 1988b, 1990), with
restricted-memory algorithms such as MREC (Sen and Bagchi, 1989), MA∗ (Chakrabarti
et al., 1989), SMA∗ (Russell, 1992), RFBS (Korf, 1992, 1993) or with algorithms for
dynamic environnements such as D∗ (Stentz, 1995). We may also try to rediscover and
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extend the sub-admissibility results relative to the bidirectional algorithms (see (Farreny,
1995), chapter 8, for preliminary work). The generalizing formalization that we have only
applied here to the properties of completeness, admissibility and sub-admissibility may
be also contribute to better apprehendother propertiesknowingly ignored in this paper;
for instance: such algorithm always finds a better solution than such other, such algorithm
presents such kind of complexity in time or space, etc.

Notes

1. The definitions of the completeness, the admissibility and the sub-admissibility are recalled in Section 2.
2. It is not possible to recall here the definitions of these algorithms.
3. The notation A∗ (Nilsson, 1971) is considered further.
4. The number of sons of any node is finite. Some authors say that the graph islocally finite.
5. For Nilsson, the length of a pathC is the sum of the arc costs ofC. We denote it:Ladd(C).
6. We use here the adjectivedynamicwith the meaning introduced by Pohl (1973). Mero (1984) then Mahanti

and Ray (1988) use the adjectivemodifiable. Kainz, Kaindl and K¨oll (1992, 1996) usedynamicwith a more
restrictive meaning than Pohl and us.

7. Other authors (Pohl, 1977; Pearl, 1984; Korf, 1985; Mahanti and Ray, 1988) say thath is admissiblerather
than lower-bounding.

8. Gelperin (1977) gives a particular condition for guaranteeing admissibility of A∗ when the state graphs contain
non-positive arc costs. We do not know another work dealing with this problem.

9. Nevertheless the interest of other forms of length is suggested by Schoppers (1983) and Pearl (1984) and
illustrated by Yager (1986), Farreny (1996c) and Gonella (1989).

10. V is closed under2,2 is associative and admits an identity element inV. We denote:(V,2).
11. This particular form ofE-extraction is also considered by Davis (1988).
12. Note: the tilde on A reminds thea priori non staticity ofh.
13. Several authors consider a statich such that: for any goal statet , h(t) = 0; this property is sometimes called

coincidence.
14. Length relative to some monoid (V,2); the arc valuations are taken inV (see Section 3.1).
15. That is to say: without repeating any state.
16. Absorbant circuit: whose length< en(en: identity element of the considered monoid).
17. Becausef ≥ ϕ(g∗), if ∀n state,∃δn > 0, ∀i and j ranks of extraction| fi (n)− f j (n) | ≥ δn then it is assured

that f is finitely decreasing. This case appears for instance whenf only may take decimal values with at most
p figures after the point (particular case: integer values).

18. We don’t give the details by lack of place.
19. Statement ofLemma 3.1of Nilsson (1971):If ĥ(n) ≤ h(n) for all n, then at any time before A∗ terminates

and for any optimal path P from node s to goal, there exists an open node n′ on P with f̂ (n′) ≤ f (s).
20. For instance, this property is true if (V,2) is a group rather than a simple monoid.
21. Statement ofLemma 2of Pearl (1984):Let n′ be the shallowest OPEN node on an optimal path P∗

s−n′′ to any
arbitrary node n′′, not necessarily in0. Then: g(n′) = g∗(n′), stating that A∗ has already found the optimal
pointer-path to n′ (i.e., n′ is along P∗s−n′′ ) and that path will remain unaltered throughout the search.

22. Statement of Theorem 3.1 in Nilsson (1971):If h(n) ≤ h(n) for all nodes n, and if all arc costs are greater
than some small positive numberδ, then algorithm A∗ is admissible.

23. BF∗ isψ−1(M)-admissible, that is, the cost of the solution path found by BF∗ is at mostψ−1(M).
24. For anyL-standard graph, there exists a minimal path froms to T .
25. We don’t give the details by lack of place.
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