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We study the statistical performance and applicability of a simple quantum state discrimination
technique for the analysis of data from nuclear quadrupole resonance experiments on a TNT sample.
The target application is remote detection of anti-personnel landmines. We show that, even for data
that allows the determination of only one time dependent component of the NQR subsystem, the
use of the Bayes optimal detector leads to greatly improved ROC curves with respect to the popular
demodulation technique, especially for spin echo signals with a low signal to noise ratio. The method
can easily be extended to incorporate results from other sensing modalities and the incorporation of
informationally complete measurements that estimate the full density matrix of the NQR subsystem.

PACS numbers:

INTRODUCTION

In this report we address the problem of optimally de-
ciding whether a given closed volume contains TNT con-
tent by means of nuclear quadrupole resonance (NQR)
measurements. Nuclear quadrupole resonance signals re-
sult from the relaxation of nuclear quadrupole momenta
to their original thermal equilibrium position after an
initial, high power RF pulse has been applied. The ther-
mal equilibrium con�guration of the nuclear spins is a
function of the electromagnetic �eld in the vicinity of
the quadrupole active nuclei. As a result, the NQR spec-
trum is very speci�c with respect to chemical compounds
in the substance involved and can serve as a �ngerprint
to identify that substance. Because of its high potential
value in remote explosive detection, there is renewed in-
terest in NQR methods for landmine and UXO detection,
as well as for securing high risk areas such as airports
by non-intrusive means. Quite incidentally, NMR and
NQR systems have recently also received great attention
for their applicability in the fast growing �eld of quan-
tum information [12]. In fact, state of the art quantum
computers are currently based on the principles of NMR.
Because the relaxation of the nuclear spin is quantized,
one would conjecture that a quantum statistical analy-
sis of the data is optimal [4], [6] and [10]. However, the
macroscopic bulk size and consequently large number of
spins necessary for an appreciable signal strength, as well
as the far from absolute zero temperature of the sample
in realistic conditions, call for a classical statistical ap-
proach. It has been shown that the principle of Bayes
optimal observation [1] is e¤ective in both the quantum
and classical domain. If only one particular kind of mea-
surement is performed, the mathematical analysis will
be identical for the quantum and classical cases. We will
brie�y introduce both Bayes-optimal detection and the

popular demodulation technique and show by means of
ROC curves that Bayes-optimal detection o¤ers a vast
improvement over the latter, especially for a very low
signal to noise ratio, as in the case of NQR based TNT
detection.

LANDMINES AND NUCLEAR QUADRUPOLE
RESONANCE

The detection of landmines turns out to be an ex-
tremely di¢ cult task. Even though more and more land-
mines are made of plastic, the bulk of landmines is still
detected using metal detectors. The reason for this, is
that all landmines contain at least a small amount of
metal content in the detonator and the metal detector
gives a clear signal that is trusted by �eld workers. By
increasing the sensitivity of the metal detector it is pos-
sible to reliably detect landmines. The problem is that
the increased sensitivity will make the metal detector re-
sponsive to other metal objects that abound in postwar
territory. The large false alarm rate that is accompa-
nied by the increased sensitivity, results on average in
500 to 1000 objects to be wrongly classi�ed as poten-
tial mines, for each real mine encountered. The over-
head in time, energy and cost, not to mention the high
rate of accidental detonation of real landmines as a re-
sult of this enormous high false alarm rate, has spurred
the search for a better classi�cation method of the de-
tector signals. This classi�cation of detected signals is
made more di¢ cult by the enormous variety of mines,
soil parameters, vegetation and weather conditions. A
possible solution involves the use of nuclear quadrupole
resonance (NQR) techniques. A necessary condition for
the use of NQR, is the presence of a substance with a
nuclear electric quadrupole moment. An ideal candidate
is the naturally stable nitrogen isotope 14N; (with a nat-
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ural abundance of 99.64 %) with nuclear spin 1 and cor-
responding nuclear quadrupole moment. All known ex-
plosives contain 14N; so that, in principle, it is possible
to detect any non-metallic mine by NQR [14]. The NQR
spectrum for 14N has transitions in the frequency range
between 0 and 6 MHz, actual values depending mostly on
the electric �eld gradient tensor, which is primarily de-
termined by the charge distribution of the electrons that
bind the nitrogen to the rest of the explosive. The re-
sulting NQR signal is therefore highly dependent on the
chemical structure of the sample, and delivers a poten-
tially very reliable classi�cation with an accompanying
very low false alarm rate. Compared with other popu-
lar mine detection techniques such as the metal detector
and the ground penetrating radar, NQR-based detector
performance is not very sensitive with respect to weather
conditions. Add to this that it is possible to construct a
hand held NQR detector, and it seems that NQR is an
ideal candidate for explosive detection. The main chal-
lenge for NQR techniques, is the inherently low energy
content of the signal, resulting in a very low signal to
noise ratio (SNR). To improve the SNR, many repeti-
tions of the experiment are necessary. Rather than just
measuring the free induction decay of a single excitation,
one can set up an appropriate sequence of RF pulses, and
measure the returned echo after each such pulse. In this
way we obtain a larger data set from which inferences
can be made. However, the rate at which the repetition
is physically possible, is bound from below in a funda-
mental way by the physical parameters of the relaxation
process. The nuclear relaxation is a result of two di¤er-
ent mechanisms, called the spin-spin relaxation and the
spin-lattice relaxation. The relaxation time that char-
acterizes the spin-lattice relaxation, usually denoted T1,
determines the time necessary for the system to regain
its original thermal equilibrium state, and gives a bound
on how quickly a pulse sequence can be initiated after
another. The spin-spin relaxation time, denoted T2; is
indicative of the decoherence as a result of spin-spin in-
teractions and determines the length of the spin echo se-
quence. Spin-spin relaxation times are generally (much)
shorter than spin-lattice relaxation times. In practice,
we can apply a pulse sequence of length T2; and repeat
this pulse sequence every T1. For most explosives, the
relaxation times are short enough so that NQR detection
becomes feasible. Unfortunately, about 60% of the land-
mines contain ��trinitrotoluene (TNT), which has relax-
ation times that lead to prohibitively long detection times
for e¢ cient NQR detection within the operational limits
of landmine detection. It is therefore projected that an
NQR based landmine detector will probably serve mainly
as a con�rmation sensor, i.e. a detector that is employed
to decrease the false alarm rate only after a metal detec-
tor or a ground penetrating radar system has detected
a potential landmine. Whether used as a con�rmation
or as a primary detector, NQR detection e¢ ciency for

TNT will bene�t from a reduction in the time necessary
for reliable detection. Because one cannot shorten the
relaxation parameters of TNT, much e¤ort has gone into
cleverly designing the emitted RF pulse and increasing
the sensitivity of the receiver. Besides these e¤orts, it
is worthwhile to pursue better signal analytic detection
techniques.

QUANTUM OPERATIONS AND THE
EVOLUTION OF THE NQR SIGNAL

It is not feasible to describe the entire quantum-
physical state of the landmine, nor would this be inter-
esting. What causes the NQR signal, is the change in the
magnetization along the direction of the solenoid. In the
case of 14N , we are dealing with a spin-1 system so that
the relevant quantum mechanical subspace is spanned by
just three orthogonal vectors. A full determination of the
state in this three-dimensional subspace could, in princi-
ple, lead to e¢ cient (and provable optimal) strategies for
detection and classi�cation of the NQR signal. However,
even the full characterization of the state in just this three
dimensional subspace is not feasible with a single pulse
sequence, as is the case for our data here. However, we
do not necessarily need detailed knowledge of the whole
state. The mathematical formalism required for opti-
mal distinction between arbitrary quantum states can
easily be simpli�ed to accommodate our limited knowl-
edge about the state. We will brie�y show how quantum
operations can serve as a framework to relate the mea-
sured quadrature components of the current in the coil
to quantum state discrimination tools. In theoretical de-
scriptions of NQR ([5], [9], and [11]), the state of the
system is a classical statistical mixture of pure quantum
states, described by a density operator � belonging to
the class of linear, positive operators that sum to one
when they act upon a complete set of eigenvectors. If
we consider as system the landmine, its immediate sur-
roundings, and the NQR detector, the detection system
can be considered as closed and the dynamics of the to-
tal density operator �closed is governed by the unitary
evolution that solves the Schrödinger equation

d�closed(t)

dt
= � i

�h
[H; �closed(0)] (1)

Here �closed(0) is the initial density operator and
H = Hrf+HQ; with HQ is the nuclear quadrupole
Hamiltonian, Hrf the Hamiltonian corresponding to the
RF pulse and [ ; ] is the commutator. The strength of
the quadrupolar Hamiltonian depends mainly on the cou-
pling between the electric �eld gradient (EFG) and the
quadrupolar moment. The e¢ ciency of the excitation
by an RF �eld depends on the relative orientation be-
tween the incident radiation and the EFG principal axis
frame. Because the EFG principal axis frame depends on
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the molecular orientation, it is not possible to excite all
quadrupole levels with the same e¢ ciency in a powder
crystalline sample. A calculation shows that the signal
strength resulting from a crystalline powder is approxi-
mately only 43% the strength of a signal stemming from
a single crystal with the same number of NQR active nu-
clei [9]. In absence of the RF pulse, a canonical ensemble
of NQR spin-1 systems at temperature T , is described by
a density operator

� =
exp(�HQ=kT )

Tr exp(�HQ=kT )]
=
1

Z
(1�HQ=kT ) +O(

1

T 2
) (2)

Here k is the Boltzmann constant, T the temperature
in Kelvin, and Z the partition function, which acts as a
normalization. The RF pulse perturbs the thermal equi-
librium and it is the relaxation from this perturbed state
to Eq..(2), according to Eq..(1), that is responsible for
the NQR signal that we are interested in. For a pulse
sequence, the Hamiltonian Hrf is Hpulse for a period of
time, followed by absence of a pulse interaction for an-
other period of time, after which, againHpulse is switched
on, and so on. The pulse will change the EFG, and hence
the coupling strength of the quadrupole moment to the
EFG. It is usual to approximate this as a series H0; H1;
H2; H3; : : : describing the Hamiltonians at the time in-
stances t0; t1; t2;::: The evolution Eq. (1) can then be
formally solved for � to yield

�(t0 + t1 + : : :) = e
�iHntn : : : e�iH0t0�(0)eiH0t0 : : : eiHntn

Because our data comes from the electron current in the
coil, we need a way to connect the state of the mixture
of the quadrupole active spins to this current. The coil
used is a Faraday detector, and the electron current in
the coil is the direct result of the load of the preampli�er
connected to the coil and the change of the magnetic �ux
inside the coil. The expectation of the magnetization in
the direction of the axis of symmetry of the solenoid (say,
the z-axis), is obtained by tracing over the product of the
state � (the mixture of quadrupole active spin-1 states)
with the magnetization operator �z along that spatial
axis:

hMzi = Tr(�z�) (3)

Such a tracing operation, is an example of a so-called
quantum operation. A quantum operation o¤ers the most
general possible description of an evolution [12], and is
de�ned as a mapping " that transforms an initial state�0
to a �nal state �

� = "(�0) (4)

such that there exists a set O, called operation elements,

O =fEk :
X
k

EkE
y
k = I;8� : Tr(Ek�) � 0g; (5)

for which " can be written as

"(�0) =
X
k

Ek�0E
y
k (6)

The operations, by de�nition (5), satisfy
P
EkE

y
k = I;

and are hence trace-preserving. Important examples of
operations that are trace-preserving, are projective mea-
surements, unitary evolutions and partial tracing. If the
quantum operation is a general description of a quan-
tum measurement (or evolution), then to each outcome
k; we associate one member Ek of the collection of mea-
surement operators O =fEk; k = 1; 2; :::g that act on the
state space. If the state is � immediately before the mea-
surement , then the probability that the outcome k occurs
is

p(kj�) = Tr(Ek�Eyk) (7)

and the state after the interaction, if k occurs, is

�fin =
Ek�E

y
k

Tr(Ek�E
y
k)

(8)

The two most common examples of quantum operations,
are unitary transformations ("(�0) = U�0U

y; U a uni-
tary transformation) and von Neumann projective mea-
surements ("m(�0) = Pm�0P

y
m; with Pm a projector on

the subspace labelled m). Many more examples, such as
in quantum computation, can be found in [12] and mod-
ern descriptions of quantum experiments, as in [3], [13].
In the latter, a set fMkg of positive operators satisfyingP
Mk = I and Ek =M

1=2
k is used.

Quantum operations are also a natural way to describe
quantum noise and the evolution of an open system. The
mathematical prescription of a quantum operation arises
when one considers the system to be in interaction with
an environment, and that together form a closed system,
for which Eq. (1) applies. To see how this applies here,
we denote the initial state of the system under investiga-
tion by �sys, and the state of the environment (soil and
interfering RF �elds) as �env; then the compound sys-
tem can be written as a tensor product of those states:
�sys
�env: Following the standard rules of quantum me-
chanics, the expected mixture � is the partial trace over
the degrees of the environment of the time evolved state
of the closed system:

� = Trenv(U(�sys 
 �env)Uy) (9)

It can be shown [12] that Eq. (9) is only slightly more
general than Eq. (6), hence � can be described as re-
sulting from a quantum operation acting on the system
density matrix. Depending on whether the environment
contains TNT or not, the examined system has a density
matrix written as �tntsys; or �

1
sys: We then expect either of

two generic types of operation to have occurred:

"0(�tntsys) = Trenv(U(�
tnt
sys 
 �env)Uy) = �0 (10)

"0(�1sys) = Trenv(U(�
1
sys 
 �env)Uy) = �1
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Here �0 is the resulting mixture that produces the mag-
netization in the presence of TNT, and �1 is the result-
ing mixture after the interaction, in absence of TNT.
An optimal detection of TNT, hence entails optimally
distinguishing the two quantum states �0 and �1. As
mentioned above, we do not posses detailed knowledge
of the states �0 and �1 in practice, but we have the
quadrature components V (t):We assume the quadrature
components are induced by the magnetization in Eq.3
by means of another quantum operation acting on the
unknown mixture �sys:

V (t) = "qc(�sys) (11)

Quantum operations are closed under conjunction; two
consecutive quantum operations can always be repre-
sented as a single quantum operation. What we need
to distinguish in the laboratory, are then the situations
represented by

V0(t) = "qc("
0(�tntsys)) = "(�

tnt
sys) (12)

V1(t) = "qc("
0(�1sys)) = "(�

1
sys)

We will show shortly that quantum operations can only
have the e¤ect of reducing the trace distance, which in
turn will increase the minimal Bayes risk associated with
distinguishing the two situations. Hence Bayes optimal
detection using the quadrature components induces some
loss in detector performance in comparison with the same
procedure applied to a reconstruction of the state �sys;
because we skip one quantum operation in Eq.12, this
would lead to a lower Bayes-risk.

DETECTION SCHEMES

Bayes optimal observation of NQR data

In essence, Bayes-optimal detection deals with the op-
timal decision of a hypothesis from a set of mutually ex-
clusive hypotheses. Consider the binary decision problem

H0 : the signal indicates TNT presence

H1 : the signal indicates no TNT presence

If a given set of data is compatible only with one of the
two hypotheses, the decision problem becomes trivial.
However, in practice, the data generally supports both
hypotheses, albeit with a di¤erent probability, and the
decision task is consequently complicated by this fact. If
we are given data xi from a set of possible outcome results
X = fx1; x2; : : : ; xi; : : : ; xng; and the factual occurrence
of xi supports both hypotheses, we need to infer what
the probability was of getting the result xi as a result
of either hypothesis being true. That is, we need some
means to evaluate p(xijH0) and p(xijH1): Any additional
(prior) information can be included under the label D

and then we compare p(xijH0; D) and p(xijH1; D): Of
course, what we are after, is the probability of H0 or H1
being true, on the condition that D holds and xi was the
outcome of the experiment. By the use of Bayes�theorem
[8], we have

p(H0jxi; D) = p(H0jD)
p(xijH0; D)
p(xijD)

(13)

p(H1jxi; D) = p(H1jD)
p(xijH1; D)
p(xijD)

(14)

We eliminate the denominator by calculating the ratio of
Eq. (13) and Eq. (14):

p(H0jxi; D)
p(H1jxi; D)

=
p(H0jD)
p(H1jD)

p(xijH0; D)
p(xijH1; D)

(15)

In absence of any preference which of the two hypotheses
is more likely than the other on the basis of the prior in-
formation alone, we set p(H0jD)

p(H1jD) = 1. In complete absence
of any prior information, we omit dependence on D: The
quantity of interest for optimally choosing between two
alternative hypotheses, is the likelihood ratio (also called
the odds in the binary case):

�i =
p(H0jxi)
p(H1jxi)

(16)

If the signal strength is low in comparison with the
noise content of data, the probability p(H1jxi) of no TNT
being present given the data xi; will generally be greater
than p(H1jxi): We call the detection apparatus Bayes-
optimal i¤ the obtained outcome xi is the outcome that
maximizes the odds, Eq.(16), that the outcome given,
pertains to the system under investigation rather than
to noise in the detection system. It turns out that this
is a model for quantum as well as classical observation
[2]. Assuming our detector is Bayes-optimal, allows for
an optimal detection strategy by reversing the logic of
the detector. Of course, in practice we do not know in
advance whether the physical detector satis�es the con-
dition of Bayes-optimality, and the performance will de-
pend on how well this condition will be met. In accor-
dance with quantum mechanics, we assume the probabil-
ity p(H0jxi) (and p(H1jxi)) is a monotone function of the
trace distance between the actually measured signal, and
the ideal (averaged over many samples) signal obtained
in the presence (absence) of TNT. The rationale for tak-
ing the trace distance, is that it arises naturally when
one considers the Bayes risk in the state discrimination
problem.

Trace distance and Bayes risk of distinguishing
quantum states

If we are given two states �0 and �1 with a priori prob-
abilities p0 and p1 = 1 � p0; then, following Eq. (4), we
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look for two operations elements O =fE0; E1) such that
E0 + E1 = I and E0; E1 � 0 that minimize the Bayes
risk or probability of error [4] :

RO(p0) = p0Tr(�
0E1) + p1Tr(�

1E0) (17)

rewriting Eq.(17) once with E1 = I � E2 and once with
E2 = I � E1; adding and dividing, yields

RO(p0) =
1

2
[1� Tr[(p0�0 � p1�1)(E0 � E1)]

To proceed, we de�ne the trace distance between �0and
�1, as

D(�0; �1) =
1

2
Tr
q
(�0 � �1)(�0 � �1)y (18)

An important property of the trace distance is that it is
symmetric in its arguments, positive i¤ �0 6= �1; zero i¤
�0 = �1; and satis�es the triangle inequality. In other
words, it is a bona-�de distance measure on the set of
density matrices. Another important property of the
trace distance, is given by

D(�0; �1) = max
Ei2O

Tr(Ei(�
0 � �1))

With this we can show [12] that the minimum value the
Bayes risk minO RO(p0) can attain does not depend on
O and equals

min
O
RO(p0) = RBayes(p0) (19)

=
1

2
� 1
2
Tr[
q
(p0�0 � p1�1)(p0�0 � p1�1)y (20)

In our treatment of the data, each speci�c sample could
equally well contain TNT, or not, so that we have as prior
probabilities p0 = p1 = 1� p0 = 1=2 :

RBayes(p0) =
1

2
�D(�0; �1) (21)

We see the minimal Bayes risk is attained for two states
that maximize the trace distance. Trace preserving quan-
tum operations can be shown to cause a contraction in
the space of density operators [12]. Because the trace dis-
tance is a true distance measure on the space of density
operators, it can only decrease as a result of an arbitrary
trace-preserving quantum operation ":

D(�0; �1) � D("(�0); "(�1)) (22)

If the current in the coil is the result of Eq. (10), then be-
ing able to distinguish the currents reliably (i.e., the trace
distance is greater than can be explained from �uctua-
tions), indicates we have successfully distinguished the
situations represented by H0 and H1:

The Demodulation technique

A popular method to establish the presence of a given
substance in a NQR tested sample, is the use of the so-
called demodulation technique. This method is particu-
larly simple and consists of calculating an estimate �(�n)
of the power spectral density S(�) of the signal s(tn);
n = 1; : : : ; 256; by �rst fast Fourier transforming the sig-
nal and taking its modulus squared. Let us call �max
the frequency �max = arg(max(S(�))) where one expects
the spectral line with the highest intensity in presence
of TNT. The value of the estimated power spectral den-
sity �(�max) evaluated at the frequency �max; is then the
test statistic for a treshold detector. If �(�max) exceeds
a given treshold, the presence of TNT is accepted, if not,
it is rejected. The estimated �(�n) will in general de-
viate from S(�) at the precise values �n, but may be
approximately regarded as an average over the interval
[�n��n�12 ; �n+1��n2 ]: To account for this, sometimes the
average under �(�n) over a few frequency bins is taken
as a statistical test parameter. Whether this is useful or
not depends, among other things, on the magnitude of
the width of the spectral line with the highest intensity
relative to the width of the frequency bins. Moreover, as
NQR spectra are generally a function of the temperature
of the sample, and because this parameter is di¢ cult to
estimate in demining applications within a range of 5 to
10 Kelvin, the value of �max will depend on the temper-
ature too. To make sure we do not miss the peak, one
can then take the area over a region in the frequency
domain where one expects the peak. This complication
presents no real problem to the method employed and,
however important to the actual demining problem, is not
taken into account here (see, however, [7] and [11]). All
our experimental samples are taken at the same tempera-
ture. As expected, we see little change in the e¢ ciency of
the method, whether we use �(�max); or a sum of valuesP
�(�max) for a tiny region surrounding the relevant fre-

quency bin. However, a considerable improvement is ob-
tained when we allow for the demodulation technique to
sample multiple peaks simultaneously. The results that
we present here, employ the single peak value �(�max)
of the frequency bin containing the mean excitation fre-
quency 841.5 kHz, as well as an improved demodulation
algorithm exploiting knowledge of three resonance fre-
quencies of TNT within a range of a few tens of kHz
around the mean excitation frequency 841.5 kHz.

EXPERIMENTAL RESULTS

Set up and data acquisition

The data employed for our analysis was kindly pro-
vided by the NQR group of King�s College, London, un-
der supervision of Professor J.A.S. Smith. In the experi-
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mental set up employed, a pure monoclinic TNT sample,
typical of that found in an anti-personnel mine, is placed
inside a solenoidal coil. The same coil is used for emis-
sion of the RF-pulse, as well as for the reception of the
subsequent echo. The returned echo is routed through a
hardware band-pass �lter (approximately 50 kHz width)
and subsequently sent to a Tecmag Libra spectrometer
that splits the signal in two signals which are then mixed
with two quadrature components, yielding a complex dis-
crete time series. Because of the ideal laboratory condi-
tions under which the signal has been obtained, the re-
sults will compare unrealistically optimistic with respect
to those obtained under �eld conditions. In particular,
the absence of RF interference and the use of a coil that
contains the sample in its entirety, must be taken into
account when attempting to compare the results of our
analysis with those of data obtained under more realis-
tic conditions. The emitted RF signals are pulsed, spin
locked echo signals with a mean excitation frequency of
841.5 kHz. The mean and width of the excitation are
such, that 4 spectral lines of TNT can be detected within
the frequency range of the band pass �lter. Because the
same coil is used for the emission of the RF signal (which
has a mean power of several kilo watts), as for the recep-
tion of the echo (which is extremely weak), the returned
echo contains so-called antenna ringing e¤ects. To cancel
the e¤ect of the antenna ringing, a phase cycling tech-
nique, popular in the more established �eld of NMR, is
employed. The phase cycling technique requires forming
an appropriate sum of four signals. The signals used for
the analysis, are the sum of 5 such phase-cycled sums and
hence consist of 20 repeated data acquisitions, averaged
to improve signal to noise ratio. The sampling time is
5�S. and each set has 8192 data points, which consists
of 32 sequential echo signals, each containing 256 data
points. The pulse sequence is of the type

� � � � � � 2� � � � 2� � � � 2� � :::

Here � denotes the RF pulses and the 1280 �S. of data
(256 times 5 �S.) for each echo signal is acquired during
the 2� periods between the pulses. All algorithms are
programmed in MATLAB 7 on a 2,2 Ghz PC with 512
MB RAM. Both methods are fast: the determination of
whether a given signal was obtained in the presence of
TNT or not, requires in both cases a calculation time less
than a second, more than one order of magnitude below
the necessary data acquisition time.

Detector performance

The statistical assessment of detector performance is
based on the sensitivity, speci�city and ultimately on the
functional relationship which exists between these two, as
expressed in the receiver operating characteristic (ROC).
The true positive rate, or sensitivity, is the probability

that the detector indicates the presence of a mine, when
there is indeed a mine present. The false positive rate is
de�ned as the probability that the detector indicates the
presence of a mine when there was no mine present. The
speci�city is then de�ned as 1�false positive rate. In-
creasing the sensitivity of the detector, lowers the speci-
�city and vice versa. The overall performance is therefore
expressed by means of a receiver operating characteristic
(ROC) curve, which plots the sensitivity as a function
of the false positive rate. By de�nition, all ROC curves
have at least two points in common: the origin (sensitiv-
ity zero, speci�city 100%, i.e. the detector never indicates
the presence of a mine ) and the point (1,1) (sensitivity
100%, speci�city 0%, i.e. the detector indicates pres-
ence of a mine regardless of sample content). An ideal
detector is one with a ROC curve that jumps to 100%
immediately after the point (0,0) and stays there. Such
a detector can reliably distinguish signals from noise and
vice versa. A completely ignorant detector (i.e., a de-
tector that indicates presence or non-presence in a com-
pletely arbitrary fashion) is then one for which the sensi-
tivity always equals (1-speci�city) and corresponds to a
ROC curve that coincides with the line joining (0,0) with
(1,1). The data used to calculate the ROC curves were
obtained by using 100 data samples with TNT, and 100
data samples without TNT. Because of spin-lattice re-
laxation, each progressive echo contains less information.
Consequently we expect the signal quality to decrease as
a function of the echo number, a behavior we see re�ected
in the ROC curves and in the line intensities of the three
most visible resonances as a function of the echo number,
as depicted in �gure 1.
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FIG. 1: The intensity of the three TNT quadrupole reso-
nances within experimental reach, averaged over 100 signals,
as a function of the echonumber. The decrease in intensity
is approximately exponential. The intensity of the last few
echoes is two orders of magnitude smaller than the �rst.

In �gure 2 and �gure ??, we have depicted ROC curves
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FIG. 2: ROC curves for the demodulation technique for a
single peak. In decreasing order of performance (ever lower
ROC curves), we plotted ROC curves for echoes 9 (solid), 13
(dashes), 17 (point-dash) and 21 (points) respectively. The
�rst four echoes yield close to perfect detectors.
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FIG. 3: ROC curves for the Bayes optimal detector. As in
the previous graph, shown are ROC curves for echo numbers
9 (solid), 13 (dashes), 17 (point-dash) and 21 (points), in
decreasing order of performance respectively. The �rst ten
echoes yield close to ideal detectors.

for both detection methods. As is well-known, ROC
curves can be "convexi�ed" using mixed measurements,
i.e., measurements that are linear combinations of mea-
surements with a threshold value that corresponds to ex-
tremal points of the experimental ROC curve. This pro-
cedure results in an improved detector. Nevertheless, we
have depicted all ROC curves calculated only for single
threshold values; the convexi�ed ROC curves can eas-
ily be visualized from the given experimental curves.The
Bayes optimal detector uses the whole signal without
noise reduction (except for the hardware band-pass �l-
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FIG. 4: An improved demodulation detector utilising the
three most distinct peaks in the NQR spectrum. As before,
depicted are echoes 9 (solid), 13 (dashes), 17 (point-dash) and
21 (points). One can see the detector is a considerable im-
provement over the single peak detector, but lags behinds the
Bayes optimal detector.

ter), whereas the demodulation detector measures the
intensity of the single peak with the highest intensity,
which comes down to a very narrow boxcar band-pass
�lter. In this sense the two methods are opposites of
one another. An intermediate detector can be obtained
by using the three most distinct resonances in the NQR
spectrum of TNT within the frequency band allowed by
the band-pass �lter. As can be seen from the ROC curves
in �gure 4, the performance of the three peak demodu-
lation technique, although still lagging behind the Bayes
optimal detector, is better than the single peak detec-
tor.The normalized area under a ROC curve can be taken
as a crude measure of the overall performance of the de-
tection scheme. The ideal case then corresponds to an
area of one, the completely ignorant detector scores one
half. Due to the high risks involved in the practice of
demining, it is crucial no mine be missed, i.e., one wants
to have a sensitivity as close to 100% as possible. As
indicated before, the main problem with many of the
current demining detectors, is that the necessity of hav-
ing such a high sensitivity, will lower the speci�city to
such an extent, that many false alarms become unavoid-
able.The Bayes optimal detector allows to use any of the
�rst 10 echo numbers to obtain a detector that is very
close to ideal. In contrast, the demodulation detector
only yields a close to ideal detector for the �rst 4 echoes.
We see in �gure 5 that the overall performance of the de-
modulation detector decreases much more rapidly than
the Bayes optimal detector. As the �rst echo already
yields a perfect detector for both methods, there seems
no obvious incentive to improve the detection capabili-
ties. However, the spin-lattice relaxation constrains the
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FIG. 5: A comparison between the overall performance of
the demodulation (dotted curve) and Bayes optimal detection
(solid curve) methods. Depicted is the area under the ROC
curve as a function of the echo number. One can see how for
both methods the performance decreases with increasing echo
number. The Bayes optimal detection clearly outperforms the
demodulation technique after echo number 4.

time between the spin-locked pulses to a minimum of 10
seconds. Hence the necessary data acquisition time for
the each single data sample, is approximately 20 acqui-
sitions*10 seconds = 200 seconds. In actual demining
applications, the necessary acquisition time will further
increase as a result of RF interference, other NQR active
soil constituents such as piezoelectric ceramics, and the
fact that only single sided (as opposed to the sample be-
ing within the coil, as is the case for our data), remote
acquisition is possible. However, one can substantially
decrease this acquisition time by combining the informa-
tion in the di¤erent echoes. It is hence of vital importance
to improve the detector performance for all the echoes in
the pulse sequence. The proposed detector succeeds in
doing just that.

CONCLUDING REMARKS

We examined the applicability of a simple Bayes-
optimal quantum state discrimination technique to see if
it is possible to improve the detection capabilities of re-
mote TNT detection by NQR measurements. Although
the experimental setup employed here is only able to give
an estimate of a single the projection of the NQR state
onto the axis of symmetry of the solenoid, the method de-
livers a very reliable detector. A comparison was made
with the popular demodulation detector. Both methods
are simple and fast, but our results indicate the Bayes-
optimal scheme o¤ers a considerable improvement over
the demodulation approach. The di¤erence in perfor-
mance between the two methods becomes greater as the
echo number increases. For the last few echoes, the ad-

vantage becomes less pronounced, which we attribute to
the fact that the signal strength of the echo diminishes
exponentially with increasing echo number, so that even-
tually both methods will fail to deliver for very weak
echoes. Handling signals with a low SNR is important,
as one expects a deterioration of the already low SNR
inherent in NQR measurements in actual �eld tests. The
proposed detector o¤ers two distinct and important ad-
vantages for demining applications: increase of the speci-
�city (without sacri�cing the close to perfect sensitivity
necessary for demining applications), and a decrease of
the necessary detection time. It is possible to include
data from primary detectors (such as a metal detector
or ground penetrating radar) in the form of prior proba-
bilities in Eq. 19, so that the NQR detector becomes a
con�rmation sensor. It would be interesting to combine
di¤erent pulse sequences that allow for a two or three
dimensional reconstruction of the full density matrix of
the spin-1 NQR system, and see whether this leads to a
better detector. Besides the ability to have a more faith-
ful characterization of the density operator, varying the
pulse scheme may o¤er other advantages. By tailoring
the pulse sequences to enact on disjoint excitations in
the frequency plane, one may, depending on the magni-
tude of the cross-relaxation between the modes, be able
to improve the extraction of the information content by
questioning di¤erent modes. If di¤erent pulse sequences
are transmitted by di¤erent antenna, one can improve
the fraction of nuclei participating in the NQR signal
above the 43% limit for a single �eld orientation. As the
state contains all information about the system, a detec-
tor based on the reconstructed density operator, yields an
approximation to a truly optimal detector. It remains to
be seen whether an implementation of such a detector
o¤ers practical improvements for demining applications.
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